1
|
Ribeiro IP, Carreira IM, Esteves L, Caramelo F, Liehr T, Melo JB. Chromosomal breakpoints in a cohort of head and neck squamous cell carcinoma patients. Genomics 2019; 112:297-303. [PMID: 30802597 DOI: 10.1016/j.ygeno.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents complex chromosomal rearrangements, however, the molecular mechanisms behind HNSCC development remain elusive. The identification of the recurrent chromosomal breakpoints could help to understand these mechanisms. Array-CGH was performed in HNSCC patients and the chromosomal breakpoints involved in gene amplification/loss were analyzed. Frequent breakpoints were clustered in chromosomes 12p, 8p, 3q, 14q, 6p, 4q, Xq and 8q. Chromosomes 6, 14, 3, 8 and X exhibited higher susceptibility to have breaks than other chromosomes. We observed that low copy repeat DNA sequences are localized at or flanking breakpoint sites, ranging from 0 to 200 bp. LINES, SINES and Simple Repeats were the most frequent repeat elements identified in these regions. We conclude that in our cohort specific peri-centromeric and telomeric regions were frequently involved in breakpoints, being the presence of low copy repeats elements one of the explanations for the common rearrangement events observed.
Collapse
Affiliation(s)
- I P Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; iCBR-CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - I M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; iCBR-CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - L Esteves
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - F Caramelo
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - T Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - J B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; iCBR-CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Deakin JE, Kruger-Andrzejewska M. Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease. Chromosoma 2016; 125:633-44. [PMID: 27255308 DOI: 10.1007/s00412-016-0603-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/28/2022]
Abstract
Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia.
| | | |
Collapse
|
3
|
Souza G, Vanzela ALL, Crosa O, Guerra M. Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae). Genetica 2016; 144:157-66. [PMID: 26869260 DOI: 10.1007/s10709-016-9886-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
The genera Nothoscordum and Ipheion (Allioideae, Amaryllidaceae) are cytologically characterized by a dysploid series with variable numbers of metacentric and acrocentric chromosomes typical of karyotypes rearranged by Robertsonian translocations (RT). Since they have large chromosomes, low diploid numbers, and possess two telomeric motifs [the vertebrate-type (TTAGGG) n and the Arabidopsis-type (TTTAGGG) n ] they are suitable for investigating the occurrence and possible role of interstitial telomeric sites (ITS) associated with RT. We analyzed the distributions of telomeric sites in 12 species of Nothoscordum and Ipheion and found that both telomeric probes colocalized in all chromosome termini. Cloning and sequencing PCR products obtained using both telomeric primers simultaneously revealed long stretches of (TTAGGG) n and (TTTAGGG) n sequences together with degenerated telomeric sequences. Most acrocentric chromosomes have a 45S rDNA site at the terminal region of the short arms adjacent to the most distal telomeric sites. Telomeric signals were found at all chromosome ends, but ITS were also detected in a few proximal and subterminal regions in some Nothoscordum species. Although RT are common in this group of plants, our findings suggest that proximal positioning of telomeric motifs are not necessarily related to that kind of rearrangement. Rather, transposition of telomeric sequences followed by amplification, could better explain the presence of (TTAGGG) n and (TTTAGGG) n repeats at those sites. Furthermore, a few small interstitial sites found in some Nothoscordum species indicate that dispersion of these sequences was not restricted to the proximal region.
Collapse
Affiliation(s)
- Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Centro de Ciências Biológicas, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| | - Andre L L Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, State University of Londrina, Londrina, Paraná, Brazil
| | - Orfeo Crosa
- Laboratory of Genetics, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Marcelo Guerra
- Laboratory of Plant Cytogenetics and Evolution, Centro de Ciências Biológicas, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| |
Collapse
|
4
|
Berthelot C, Muffato M, Abecassis J, Roest Crollius H. The 3D organization of chromatin explains evolutionary fragile genomic regions. Cell Rep 2015; 10:1913-24. [PMID: 25801028 DOI: 10.1016/j.celrep.2015.02.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022] Open
Abstract
Genomic rearrangements are a major source of evolutionary divergence in eukaryotic genomes, a cause of genetic diseases and a hallmark of tumor cell progression, yet the mechanisms underlying their occurrence and evolutionary fixation are poorly understood. Statistical associations between breakpoints and specific genomic features suggest that genomes may contain elusive “fragile regions” with a higher propensity for breakage. Here, we use ancestral genome reconstructions to demonstrate a near-perfect correlation between gene density and evolutionary rearrangement breakpoints. Simulations based on functional features in the human genome show that this pattern is best explained as the outcome of DNA breaks that occur in open chromatin regions coming into 3D contact in the nucleus. Our model explains how rearrangements reorganize the order of genes in an evolutionary neutral fashion and provides a basis for understanding the susceptibility of “fragile regions” to breakage.
Collapse
|
5
|
Volleth M, Yang F, Müller S. High-resolution chromosome painting reveals the first genetic signature for the chiropteran suborder Pteropodiformes (Mammalia: Chiroptera). Chromosome Res 2011; 19:507-19. [DOI: 10.1007/s10577-011-9196-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 01/18/2023]
|
6
|
Alekseyev MA, Pevzner PA. Comparative genomics reveals birth and death of fragile regions in mammalian evolution. Genome Biol 2010; 11:R117. [PMID: 21118492 PMCID: PMC3156956 DOI: 10.1186/gb-2010-11-11-r117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/05/2010] [Accepted: 11/30/2010] [Indexed: 12/15/2022] Open
Abstract
Background An important question in genome evolution is whether there exist fragile regions (rearrangement hotspots) where chromosomal rearrangements are happening over and over again. Although nearly all recent studies supported the existence of fragile regions in mammalian genomes, the most comprehensive phylogenomic study of mammals raised some doubts about their existence. Results Here we demonstrate that fragile regions are subject to a birth and death process, implying that fragility has a limited evolutionary lifespan. Conclusions This finding implies that fragile regions migrate to different locations in different mammals, explaining why there exist only a few chromosomal breakpoints shared between different lineages. The birth and death of fragile regions as a phenomenon reinforces the hypothesis that rearrangements are promoted by matching segmental duplications and suggests putative locations of the currently active fragile regions in the human genome.
Collapse
Affiliation(s)
- Max A Alekseyev
- Department of Computer Science & Engineering, University of South Carolina, 301 Main St, Columbia, SC 29208, USA.
| | | |
Collapse
|
7
|
Wilkins AS. The enemy within: an epigenetic role of retrotransposons in cancer initiation. Bioessays 2010; 32:856-65. [PMID: 20715060 DOI: 10.1002/bies.201000008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article proposes that cancers can be initiated by retrotransposon (RTN) activation through changes in the transcriptional regulation of nearby genes. I first detail the hypothesis and then discuss the nature of physiological stress(es) in RTN activation; the role of DNA demethylation in the initiation and propagation of new RTN states; the connection between ageing and cancer incidence and the involvement of activated RTNs in the chromosomal aberrations that feature in cancer progression. The hypothesis neither replaces nor invalidates other theories of cancer, in particular the somatic mutation theory, but helps clarify and unify much of the hitherto poorly integrated, complex phenomenology of cancer.
Collapse
|
8
|
Microarray-based cytogenetic profiling reveals recurrent and subtype-associated genomic copy number aberrations in feline sarcomas. Chromosome Res 2009; 17:987-1000. [PMID: 19941159 DOI: 10.1007/s10577-009-9096-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/24/2009] [Accepted: 10/26/2009] [Indexed: 01/13/2023]
Abstract
Injection-site-associated sarcomas (ISAS), commonly arising at the site of routine vaccine administration, afflict as many as 22,000 domestic cats annually in the USA. These tumors are typically more aggressive and prone to recurrence than spontaneous sarcomas (non-ISAS), generally receiving a poorer long-term prognosis and warranting a more aggressive therapeutic approach. Although certain clinical and histological factors are highly suggestive of ISAS, timely diagnosis and optimal clinical management may be hindered by the absence of definitive markers that can distinguish between tumors with underlying injection-related etiology and their spontaneous counterpart. Specific nonrandom chromosome copy number aberrations (CNAs) have been associated with the clinical behavior of a vast spectrum of human tumors, providing an extensive resource of potential diagnostic and prognostic biomarkers. Although similar principles are now being applied with great success in other species, their relevance to feline molecular oncology has not yet been investigated in any detail. We report the construction of a genomic microarray platform for detection of recurrent CNAs in feline tumors through cytogenetic assignment of 210 large-insert DNA clones selected at intervals of approximately 15 Mb from the feline genome sequence assembly. Microarray-based profiling of 19 ISAS and 27 non-ISAS cases identified an extensive range of genomic imbalances that were highly recurrent throughout the combined panel of 46 sarcomas. Deletions of two specific regions were significantly associated with the non-ISAS phenotype. Further characterization of these regions may ultimately permit molecular distinction between ISAS and non-ISAS, as a tool for predicting tumor behavior and prognosis, as well as refining means for therapeutic intervention.
Collapse
|