1
|
Hunke S, Betton JM. Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli. Mol Microbiol 2004; 50:1579-89. [PMID: 14651640 DOI: 10.1046/j.1365-2958.2003.03785.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously characterized a defective-folding mutant of maltose-binding protein of Escherichia coli, MalE31, which formed periplasmic inclusion bodies. Here, we show that MalE31 aggregation does not affect bacterial growth at 30 degrees C but is lethal at 37 degrees C. Surprisingly, under mild heat shock conditions at 42 degrees C, inclusion bodies are degraded and bacterial growth is restored. One physiological consequence for the cells overproducing MalE31 was to induce an extracytoplasmic stress response by increasing the expression of the heat shock protease DegP via the CpxA/CpxR two-component signalling pathway. Furthermore, we show that the Cpx response is required to rescue the cells from the toxicity mediated by MalE31. Finally, expression of highly destabilized MalE variants that do not aggregate in the periplasm also induces the Cpx pathway, indicating that inclusion body formation is not necessary to activate this specific extracytoplasmic stress regulatory system.
Collapse
Affiliation(s)
- Sabine Hunke
- Humboldt-Universität zu Berlin, Institut für Biologie/Bakterienphysiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | | |
Collapse
|
2
|
Peters JE, Benson SA. Redundant transfer of F' plasmids occurs between Escherichia coli cells during nonlethal selections. J Bacteriol 1995; 177:847-50. [PMID: 7836326 PMCID: PMC176670 DOI: 10.1128/jb.177.3.847-850.1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Surface exclusion is the mechanism by which F plasmids prevent the redundant entry of additional F plasmids into the host cell during exponential growth. This mechanism is relaxed in cells that are in stationary phase. Using genetically marked F' plasmids and host strains, we extend this finding to Escherichia coli populations during extended nonlethal selection in bacterial lawns. We show that a high level of redundant transfer occurs between these nongrowing cells during the selection. This result has implications for the mechanism of adaptive mutagenesis.
Collapse
Affiliation(s)
- J E Peters
- Department of Microbiology, University of Maryland at College Park 20742-4451
| | | |
Collapse
|
3
|
Abstract
The kinetics of pilus outgrowth were examined for Escherichia coli containing pDT1942, a TnlacZ insertion derivative of the IncHI1 plasmid R27, which was derepressed for transfer. IncHI1 plasmids are thermosensitive for transfer. The pili specified by pDT1942 were examined by transmission electron microscopy after the pilus had been labeled with the H-pilus-specific bacteriophage Hgal, which had been inactivated with RNase A. H pili were extended by extrusion from the cell surface and not by the addition of pilin subunits to the pilus tip. After pili were removed by vortexing, the outgrowth of full-length pili (2 microns long) required 20 min. H pili expressed at the transfer optimal temperature (27 degrees C) remained stable after incubation at the transfer inhibitory temperature (37 degrees C), but the formation of mating aggregates was inhibited at 37 degrees C. Within 1 min of exposure of the host cell to a heat stimulus of 50 degrees C, pili vanished. Pili were observed in straight and flexible forms with a field emission scanning electron microscope, which may indicate a dynamic role for the pilus in conjugation.
Collapse
Affiliation(s)
- D Maher
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
4
|
Gaudin HM, Silverman PM. Contributions of promoter context and structure to regulated expression of the F plasmid traY promoter in Escherichia coli K-12. Mol Microbiol 1993; 8:335-42. [PMID: 8316084 DOI: 10.1111/j.1365-2958.1993.tb01577.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Expression of the F plasmid traY promoter in vivo requires both host (E. coli) and plasmid encoded proteins. As judged by transcript size and primer extension analyses, the F plasmid traY promoter was utilized in vitro by purified E. coli sigma 70 RNA polymerase in the absence of other proteins. However, in vitro transcription required supercoiled templates. Endonuclease protection experiments showed that RNA polymerase is unable to form a stable complex at the traY promoter in linear or relaxed circular templates. In vitro transcription with linear templates could be elicited by altering the traY -10 and -35 hexamers to the consensus sequences. Alterations that reduced the effect of template supercoiling on apparent promoter strength in vitro also reduced the effect of the F plasmid TraJ protein on traY expression in vivo. Apparent traY promoter strength in vitro, estimated in template competition experiments, was unaltered by deletion of tra DNA normally upstream of the promoter, a change in promoter context that elicited high levels of promoter activity in TraJ- cells. These data suggest a model for regulated traY promoter activity in which a nucleoprotein complex involving tra DNA immediately upstream locally relaxes traY promoter DNA. TraJ and perhaps other activators could disrupt the complex, allowing promoter DNA to equilibrate at the prevailing negative superhelical density and thereby eliciting transcription initiation.
Collapse
Affiliation(s)
- H M Gaudin
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma 73104
| | | |
Collapse
|
5
|
Iuchi S, Lin EC. Purification and phosphorylation of the Arc regulatory components of Escherichia coli. J Bacteriol 1992; 174:5617-23. [PMID: 1512197 PMCID: PMC206507 DOI: 10.1128/jb.174.17.5617-5623.1992] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Escherichia coli, a two-component signal transduction system, consisting of the transmembrane sensor protein ArcB and its cognate cytoplasmic regulatory protein ArcA, controls the expression of genes encoding enzymes involved in aerobic respiration. ArcB belongs to a subclass of sensors that have not only a conserved histidine-containing transmitter domain but also a conserved aspartate-containing receiver domain of the regulator family. 'ArcB (a genetically truncated ArcB missing the two transmembrane segments on the N-terminal end) and ArcA were purified from overproducing cells. Autophosphorylation of 'ArcB was revealed when the protein was incubated with [gamma-32P]ATP but not with [alpha-32P]ATP or [gamma-32P]GTP. When ArcA was incubated in the presence of 'ArcB and [gamma-32P]ATP, ArcA acquired radioactivity at the expense of the phosphorylated protein 'ArcB-32P. When a limited amount of 'ArcB was incubated with excess ArcA and [gamma-32P]ATP, ArcA-32P increased linearly with time. Under such conditions, for a given time period the amount of ArcA phosphorylated was proportional to the concentration of 'ArcB. Thus, 'ArcB acted as a kinase for ArcA. Chemical stabilities of the phosphorylated proteins suggested that 'ArcB-32P contained both a histidyl phosphate and an aspartyl phosphate(s) and that ArcA-32P contained only an aspartyl phosphate(s).
Collapse
Affiliation(s)
- S Iuchi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
6
|
Iuchi S, Lin EC. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J Bacteriol 1992; 174:3972-80. [PMID: 1597416 PMCID: PMC206106 DOI: 10.1128/jb.174.12.3972-3980.1992] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Escherichia coli, the expression of a group of operons involved in aerobic metabolism is regulated by a two-component signal transduction system in which the arcB gene specifies the membrane sensor protein and the arcA gene specifies the cytoplasmic regulator protein. ArcB is a large protein belonging to a subclass of sensors that have both a transmitter domain (on the N-terminal side) and a receiver domain (on the C-terminal side). In this study, we explored the essential structural features of ArcB by using mutant analysis. The conserved His-292 in the transmitter domain is indispensable, indicating that this residue is the autophosphorylation site, as shown for other homologous sensor proteins. Compression of the range of respiratory control resulting from deletion of the receiver domain and the importance of the conserved Asp-533 and Asp-576 therein suggest that the domain has a kinetic regulatory role in ArcB. There is no evidence that the receiver domain enhances the specificity of signal transduction by ArcB. The defective phenotype of all arcB mutants was corrected by the presence of the wild-type gene. We also showed that the expression of the gene itself is not under respiratory regulation.
Collapse
Affiliation(s)
- S Iuchi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
7
|
Silverman PM, Wickersham E, Rainwater S, Harris R. Regulation of the F plasmid traY promoter in Escherichia coli K12 as a function of sequence context. J Mol Biol 1991; 220:271-9. [PMID: 1906941 DOI: 10.1016/0022-2836(91)90012-u] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TraJ and SfrA are, respectively, plasmid and host (Escherichia coli)-encoded proteins normally required for F plasmid traY promoter function. Beginning with plasmids in which a traY-lacZ fusion gene, designated phi (traY'-'lacZ)hyb, and lacY are expressed from the F plasmid traY promoter, we isolated mutants in which lac gene expression was SfrA or TraJ-independent. A total of 45 of 50 SfrA-independent isolates obtained after 2-aminopurine mutagenesis proved to have chromosomal mutations, whereas four out of four isolates obtained without mutagenesis had plasmid mutations. All of 17 isolates selected for TraJ-independent expression after mutagenesis had plasmid mutations. By restriction endonuclease digestions, 25 of 26 SfrA-independent and TraJ-independent plasmid mutations were insertions. Four of the former and three of the latter were examined further. By sequence analysis, all seven proved to be IS1 or IS2 insertions defining five insertion sites between base-pairs -49 and -82 with respect to the major traY transcription initiation site. In two cases, the same insertion allele was obtained from the two selection schemes. All three of the mutants selected for TraJ-independent gene expression manifested SfrA-independent expression as well, and levels of beta-galactosidase in different plasmid mutant strains lacking TraJ and SfrA were indistinguishable. By primer extension analysis, transcription initiation sites for traY mRNA synthesis were unaltered by the mutations. Replacing the tra sequence upstream from base-pair -78, without genetic selection, increased beta-galactosidase activity in the absence of TraJ and SfrA greater than tenfold. Activity increased two- to threefold more in a traJ+ sfrA mutant strain, and fivefold more in a traJ+ sfrA+ strain. Activity was unaltered in an sfrA+ strain without TraJ. By primer extension analysis, the traY promoter was utilized under all conditions. The data indicate that regulation of traY promoter activity is strongly dependent on sequence context.
Collapse
Affiliation(s)
- P M Silverman
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- S Iuchi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
9
|
Silverman PM, Wickersham E, Harris R. Regulation of the F plasmid traY promoter in Escherichia coli by host and plasmid factors. J Mol Biol 1991; 218:119-28. [PMID: 2002497 DOI: 10.1016/0022-2836(91)90878-a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
F plasmid DNA transfer (tra) gene expression in Escherichia coli is regulated by chromosome- and F-encoded gene products. To study the relationship among these regulatory factors, we constructed low-copy plasmids containing a phi(traY'-'lacZ)hyb gene that couples beta-galactosidase and Lac permease synthesis to the F plasmid traY promoter. Wild-type transformants maintained high levels of beta-galactosidase over a broad range of culture densities. Primer extension analysis of tra mRNA from F'lac and phi(traY'-'lacZ)hyb strains indicated very similar, though not identical, transcription initiation sites. Moreover, phi(traY'-'lacZ)hyb gene expression required both TraJ and SfrA, as does tra gene expression in F+ strains. beta-Galactosidase activity was reduced approximately 30-fold in the absence of TraJ, which could be supplied in cis or in trans. In a two-plasmid system in which TraJ was supplied in trans by a lac-traJ operon fusion, phi(traY'-'lacZ)hyb expression was a linear, saturable function of traJ expression. Enzyme activity was reduced approximately tenfold in sfrA mutants. That reduction could not be attributed to an effect on the TraJ level. Several other cellular or environmental variables had only a modest effect on phi(traY'-'lacZ)hyb expression. Hyperexpression was observed at high cell density (twofold) and in anaerobic cultures (1.2- to 1.5-fold). In contrast, expression was reduced twofold in integration host factor mutants.
Collapse
Affiliation(s)
- P M Silverman
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | |
Collapse
|
10
|
Rainwater S, Silverman PM. The Cpx proteins of Escherichia coli K-12: evidence that cpxA, ecfB, ssd, and eup mutations all identify the same gene. J Bacteriol 1990; 172:2456-61. [PMID: 2185221 PMCID: PMC208883 DOI: 10.1128/jb.172.5.2456-2461.1990] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An existing cpxA(Ts) mutant was resistant to amikacin at levels that inhibited completely the growth of a cpxA+ and a cpxA deletion strain and failed to grow as efficiently on exogenous proline. These properties are similar to those of mutants altered in a gene mapped to the cpxA locus and variously designated as ecfB, ssd, and eup. The amikacin resistance phenotype of the cpxA mutant was inseparable by recombination from the cpxA mutant phenotype (inability to grow at 41 degrees C without exogenous isoleucine and valine) and was recessive to the cpxA+ allele of a recombinant plasmid. Using methods that ensured independent mutations in the cpxA region of the chromosome, we isolated six new amikacin-resistant mutants following nitrosoguanidine mutagenesis. Three-factor crosses mapped the mutations to the cpxA locus. When transferred by P1 transduction to a cpxB11 Hfr strain, each of the mutations conferred the Tra- and Ilv- phenotypes characteristic of earlier cpxA mutants. Two of the new mutations led to a significantly impaired ability to utilize exogenous proline, and four led to partial resistance to colicin A. Two of the new cpxA alleles were recessive to the cpxA+ allele, and four were dominant, albeit to different degrees. On the basis of these data, we argue that cpxA, ecfB, eup, and ssd are all the same gene. We discuss the cellular function of the cpxA gene product in that light.
Collapse
Affiliation(s)
- S Rainwater
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | |
Collapse
|
11
|
Morel P, Powell BS, Rogowsky PM, Kado CI. Characterization of the virA virulence gene of the nopaline plasmid, pTiC58, of Agrobacterium tumefaciens. Mol Microbiol 1989; 3:1237-46. [PMID: 2796735 DOI: 10.1111/j.1365-2958.1989.tb00274.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have determined the complete nucleotide sequence of a 4.8 kilobase fragment encompassing the virA locus of the nopaline-type plasmid, pTiC58, of Agrobacterium tumefaciens. virA is composed of a single open reading frame of 2499 nucleotides, capable of encoding a protein of 91.3 kiloDaltons. A trpE::virA gene fusion was used to confirm the reading frame of virA. High nucleotide and amino acid sequence homologies were observed between pTiC58 virA and the virA sequences of three octopine-type plasmids. Strong homologies in amino acid sequence were observed between pTiC58 VirA and seven bacterial proteins which control various regulons. Two hydrophobic domains within VirA are also consistent with a model in which VirA acts as a membrane-bound sensor of plant signal molecules.
Collapse
Affiliation(s)
- P Morel
- Davis Crown Gall Group, Department of Plant Pathology, University of California, Davis 95616
| | | | | | | |
Collapse
|
12
|
Dorman CJ, Chatfield S, Higgins CF, Hayward C, Dougan G. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun 1989; 57:2136-40. [PMID: 2543631 PMCID: PMC313852 DOI: 10.1128/iai.57.7.2136-2140.1989] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ompC, ompD, and ompF genes encode the three major porins of Salmonella typhimurium. ompR encodes a positive regulator required for the expression of ompC and ompF. Transposon-generated mutations in ompC, ompD, ompF, and ompR were introduced into the S. typhimurium mouse virulent strain SL1344 by P22-mediated transduction. Following preliminary characterization in vitro, the strains were used to challenge BALB/c mice by using the oral or intravenous route. Strains harboring ompC or ompF mutations were as virulent as SL1344 after oral challenge. Strains harboring ompD mutations had a slight reduction in virulence. In contrast, ompR mutants failed to kill BALB/c mice after oral challenge and the intravenous 50% lethal dose was reduced by approximately 10(5). The ompR mutants persisted in murine tissues for several weeks following oral or intravenous challenge. Furthermore, mice orally immunized with these ompR mutant strains were well protected against challenge with virulent SL1344.
Collapse
Affiliation(s)
- C J Dorman
- Department of Biochemistry, University of Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Iuchi S, Furlong D, Lin EC. Differentiation of arcA, arcB, and cpxA mutant phenotypes of Escherichia coli by sex pilus formation and enzyme regulation. J Bacteriol 1989; 171:2889-93. [PMID: 2565334 PMCID: PMC209982 DOI: 10.1128/jb.171.5.2889-2893.1989] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Escherichia coli, mutations in arcA (dye) or arcB anaerobically derepress the synthesis of a multitude of enzymes of aerobic function, and mutations in arcA or cpxA impair F-pilus formation. It is thought that arcA encodes a promoter-recognizing protein, whereas arcB and cpxA encode sensor proteins which interact with the arcA product. In this study we found that anaerobic growth of a wild-type F' strain decreased the synthesis of both the enzymes and the pilus. Although the two arcA mutants examined were both anaerobically derepressed in the enzymes and impaired in aerobic pilus formation as expected, one mutant hyperproduced the pilus anaerobically. The two arcB mutants examined showed normal pilus formation when grown aerobically. When grown anaerobically they developed more pili than the wild-type strain did when grown aerobically. When a cpxA mutant was examined for synthesis of two aerobic enzymes, normal regulation was found. The available data suggest the following. The arcA product anaerobically represses certain genes of aerobic function and activates certain genes related to F function. It appears that the arcB product senses the redox or energy state; absence of the gene function shifts the arcA product to the nonrepressive form for enzyme synthesis for aerobic pathways. The cpxA product, on the other hand, senses the sexual state; absence of the gene function shifts the arcA product to the inactive form for F-pilus synthesis.
Collapse
Affiliation(s)
- S Iuchi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
14
|
Weber RF, Silverman PM. The cpx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J Mol Biol 1988; 203:467-78. [PMID: 3058985 DOI: 10.1016/0022-2836(88)90013-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene cpxA of Escherichia coli K12 encodes the 52,000 Mr CpxA polypeptide. The complete cpxA nucleotide sequence, reported here, predicted that CpxA contains two extended, hydrophobic segments in its amino-terminal half and could therefore be a membrane protein. Using a lac-cpxA operon fusion plasmid to overproduce CpxA and an immunochemical assay to detect the polypeptide, we show that CpxA fractionated with the bacterial inner membrane during differential and isopycnic sedimentation. Moreover, the protein could be solubilized by extraction of crude membranes with non-ionic detergents but not with KCl or NaOH, indicating that Cpx is an intrinsic membrane component. Analysis of TnphoA insertions in cpxA indicated that the region between the hydrophobic segments of CpxA is periplasmic, whereas the region carboxy-terminal to the second such segment is cytoplasmic. Based on these structural data, we propose that CpxA functions as a trans-membrane sensory protein. The DNA sequence data also indicate that cpxA is the 3' gene of an operon.
Collapse
Affiliation(s)
- R F Weber
- Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
15
|
|
16
|
Affiliation(s)
- W Paranchych
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
17
|
Abstract
We present the nucleotide sequence of the oriT region from plasmid R100. Comparison to other IncF plasmids revealed homology around the proposed nick sites as well as conservation of inverted repeated sequences in the nonhomologous region. Three areas showed strong homology (eight of nine nucleotides) to the consensus sequence for binding of integration host factor, suggesting a role for this DNA-binding protein in nicking at oriT.
Collapse
|
18
|
Cuozzo M, Silverman PM. Characterization of the F plasmid TraJ protein synthesized in F' and Hfr strains of Escherichia coli K-12. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)89230-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|