1
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
2
|
Mutation analysis, treatment and prenatal diagnosis of Chinese cases of methylmalonic acidemia. Sci Rep 2020; 10:12509. [PMID: 32719376 PMCID: PMC7385101 DOI: 10.1038/s41598-020-69565-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Methylmalonic acidemia (MMA)-affected patients may have developmental, hematological, neurological, metabolic, ophthalmological, and dermatological clinically abnormal findings. This study aimed to identify mutations in 13 Chinese MMA cases. We provided genetic counseling, treatment, and prenatal diagnosis for the families with MMA. Liquid chromatography-tandem mass spectrometry (LC–MS/MS) was performed and the results were confirmed by gas chromatography and mass spectrometry (GC/MS). Variant screening in probands was performed by targeted next-generation sequencing. Identified variants were confirmed by Sanger sequencing. Of these 13 MMA cases, seven were isolated MMA, and among them, six were caused by variants in MMUT and one was caused by a variant in MCEE. The other six cases were MMA with homocystinuria, which was caused by variants in MMACHC. We found six novel variants in three MMA-causing genes as follows: c.2008G>A, c.301_302insTA, c.984delC, and c.319A>T of MMUT; c.445T>C of MMACHC; and c.296T>C of MCEE. We provided prenatal diagnosis for two families with MMA at their next pregnancy, and one family had a healthy newborn. In conclusion, our findings expand the spectrum of genotypes in MMA. Effective genetic counseling is required to allow awareness of the patients’ families that MMA disease is treatable and a good prognosis can be obtained.
Collapse
|
3
|
Shafaat M, Alaee MR, Rahmanifar A, Setoodeh A, Razzaghy-Azar M, Bagherian H, Bagheri SD, Zafarghandi Motlagh F, Hashemi M, Abiri M, Zeinali S. Autozygosity mapping of methylmalonic acidemia associated genes by short tandem repeat markers facilitates the identification of five novel mutations in an Iranian patient cohort. Metab Brain Dis 2018; 33:1689-1697. [PMID: 30022420 DOI: 10.1007/s11011-018-0277-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Isolated Methylmalonic acidemia/aciduria (MMA) is a group of inborn errors of metabolism disease which is caused by defect in methylmalonyl-CoA mutase (MCM) enzyme. The enzyme has a key function in the catabolism of branched chain amino acids (BCAA, isoleucine, and valine), methionine, and threonine. MCM is encoded by a single gene named "MUT". Other subtypes of MMA are caused by mutations in cblA (encoded by MMAA) and cblB (encoded by MMAB), which is involved in the synthesis of methylmalonyl-coenzyme A cofactor. Different types of mutations have been identified as the cause of MMA. However, the mutation spectrum of MMA in Iran has not been studied so far. Here, we aimed to investigate the MMA causative mutations in the Iranian population. Using STR (Short Tandem Repeat) markers, we performed autozygosity mapping to identify the potential pathogenic variants in 11 patients with clinical diagnosis of MMA. Nineteen STR markers which are linked to the MUT, MMAA and MMAB genes (the genes with known causative mutations in MMA) were selected for PCR-amplification using two recently designed multiplex PCR panels. Next, the families that were diagnosed with homozygous haplotypes for the candidate genes were directly sequenced. Five novel mutations (c.805delG, c.693delC, c.223A > T, c.668A > G and c.976A > G in MUT) were identified beside other 4 recurrent mutations (c.361insT in MUT, c.571C > T and c.197-1 G > T in MMAB and c.1075C > T in MMAA). In silico analyses were also performed to predict the pathogenicity of the identified variants. The mutation c.571C > T in MMAB was the most common mutation in our study.
Collapse
Affiliation(s)
- Mehdi Shafaat
- Department of Genetics, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Mohammad Reza Alaee
- Pediatric Endocrinology and Metabolism, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rahmanifar
- Iranian National Society for Study of Inborn Metabolic Diseases, Tehran, Iran
| | - Aria Setoodeh
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Hazrat Aliasghar Childrens Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamideh Bagherian
- Medical Genetics Laboratory, Kawsar Human Genetics Research Center, No. 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Samira Dabbagh Bagheri
- Medical Genetics Laboratory, Kawsar Human Genetics Research Center, No. 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Fatemeh Zafarghandi Motlagh
- Medical Genetics Laboratory, Kawsar Human Genetics Research Center, No. 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Maryam Abiri
- Medical Genetics Laboratory, Kawsar Human Genetics Research Center, No. 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran.
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sirous Zeinali
- Medical Genetics Laboratory, Kawsar Human Genetics Research Center, No. 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran.
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran.
| |
Collapse
|
4
|
Towards the development of an enzyme replacement therapy for the metabolic disorder propionic acidemia. Mol Genet Metab Rep 2016; 8:51-60. [PMID: 27504265 PMCID: PMC4968140 DOI: 10.1016/j.ymgmr.2016.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Propionic acidemia (PA) is a life-threatening disease caused by the deficiency of a mitochondrial biotin-dependent enzyme known as propionyl coenzyme-A carboxylase (PCC). This enzyme is responsible for degrading the metabolic intermediate, propionyl coenzyme-A (PP-CoA), derived from multiple metabolic pathways. Currently, except for drastic surgical and dietary intervention that can only provide partial symptomatic relief, no other form of therapeutic option is available for this genetic disorder. Here, we examine a novel approach in protein delivery by specifically targeting and localizing our protein candidate of interest into the mitochondrial matrix of the cells. In order to test this concept of delivery, we have utilized cell penetrating peptides (CPPs) and mitochondria targeting sequences (MTS) to form specific fusion PCC protein, capable of translocating and localizing across cell membranes. In vitro delivery of our candidate fusion proteins, evaluated by confocal images and enzymatic activity assay, indicated effectiveness of this strategy. Therefore, it holds immense potential in creating a new paradigm in site-specific protein delivery and enzyme replacement therapeutic for PA.
Collapse
Key Words
- CPPs, cell penetrating peptides
- CoA, coenzyme-A
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- His-tag, six histidines tag
- LAD, lipoamine dehydrogenase
- MPP, mitochondrial processing peptidase
- MTS, mitochondria targeting sequences
- Mitochondrial targeting sequences
- PA, propionic acidemia
- PCC, propionyl coenzyme-A carboxylase
- PCCA, PCCα subunit
- PCCB, PCCβ subunit
- PP-CoA, propionyl coenzyme-A
- Propionic acidemia
- Propionyl coenzyme-A carboxylase
- Protein transduction domains
- UPLC-MS/MS, ultra performance liquid chromatography tandem mass spectrometry
Collapse
|
5
|
Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice. PLoS One 2014; 9:e102319. [PMID: 25029527 PMCID: PMC4100879 DOI: 10.1371/journal.pone.0102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 06/18/2014] [Indexed: 12/25/2022] Open
Abstract
Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.
Collapse
|
6
|
Paulsen M, Lund C, Akram Z, Winther JR, Horn N, Møller LB. Evidence that translation reinitiation leads to a partially functional Menkes protein containing two copper-binding sites. Am J Hum Genet 2006; 79:214-29. [PMID: 16826513 PMCID: PMC1559486 DOI: 10.1086/505407] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/21/2006] [Indexed: 11/04/2022] Open
Abstract
Menkes disease (MD) is an X-linked recessive disorder of copper metabolism. It is caused by mutations in the ATP7A gene encoding a copper-translocating P-type ATPase, which contains six N-terminal copper-binding sites (CBS1-CBS6). Most patients die in early childhood. We investigated the functional effect of a large frameshift deletion in ATP7A (including exons 3 and 4) identified in a patient with MD with unexpectedly mild symptoms and long survival. The mutated transcript, ATP7A(Delta ex3+ex4), contains a premature termination codon after 46 codons. Although such transcripts are generally degraded by nonsense-mediated mRNA decay (NMD), it was established by real-time PCR quantification that the ATP7A(Delta ex3+ex4) transcript was protected from degradation. A combination of in vitro translation, recombinant expression, and immunocytochemical analysis provided evidence that the ATP7A(Delta ex3+ex4) transcript was protected from degradation because of reinitiation of protein translation. Our findings suggest that reinitiation takes place at two downstream internal codons. The putative N-terminally truncated proteins contain only CBS5 and CBS6. Cellular localization and copper-dependent trafficking of the major part of endogenous and recombinant ATP7A(Delta ex3+ex4) proteins were similar to the wild-type ATP7A protein. Furthermore, the ATP7A(Delta ex3+ex4) cDNA was able to rescue a yeast strain lacking the homologous gene, CCC2. In summary, we propose that reinitiation of the NMD-resistant ATP7A(Delta ex3+ex4) transcript leads to the synthesis of N-terminally truncated and at-least-partially functional Menkes proteins missing CBS1-CBS4. This finding--that a mutation that would have been assumed to be null is not--highlights the need to examine the biochemical phenotype of patients to deduce the efficacy of copper therapy.
Collapse
|
7
|
Brooks AJ, Vlasie M, Banerjee R, Brunold TC. Spectroscopic and computational studies on the adenosylcobalamin-dependent methylmalonyl-CoA mutase: evaluation of enzymatic contributions to Co-C bond activation in the Co3+ ground state. J Am Chem Soc 2004; 126:8167-80. [PMID: 15225058 DOI: 10.1021/ja039114b] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylmalonyl-CoA mutase (MMCM) is an enzyme that utilizes the adenosylcobalamin (AdoCbl) cofactor to catalyze the rearrangement of methylmalonyl-CoA to succinyl-CoA. Despite many years of dedicated research, the mechanism by which MMCM and related AdoCbl-dependent enzymes accelerate the rate for homolytic cleavage of the cofactor's Co-C bond by approximately 12 orders of magnitude while avoiding potentially harmful side reactions remains one of the greatest subjects of debate among B(12) researchers. In this study, we have employed electronic absorption (Abs) and magnetic circular dichroism (MCD) spectroscopic techniques to probe cofactor/enzyme active site interactions in the Co(3+)Cbl "ground" state for MMCM reconstituted with both the native cofactor AdoCbl and its derivative methylcobalamin (MeCbl). In both cases, Abs and MCD spectra of the free and enzyme-bound cofactor are very similar, indicating that replacement of the intramolecular base 5,6-dimethylbenzimidazole (DMB) by a histidine residue from the enzyme active site has insignificant effects on the cofactor's electronic properties. Likewise, spectral perturbations associated with substrate (analogue) binding to holo-MMCM are minor, arguing against substrate-induced enzymatic Co-C bond activation. As compared to the AdoCbl data, however, Abs and MCD spectral changes for the sterically less constrained MeCbl cofactor upon binding to MMCM and treatment of holoenzyme with substrate (analogues) are much more substantial. Analysis of these changes within the framework of time-dependent density functional theory calculations provides uniquely detailed insight into the structural distortions imposed on the cofactor as the enzyme progresses through the reaction cycle. Together, our results indicate that, although the enzyme may serve to activate the cofactor in its Co(3+)Cbl ground state to a small degree, the dominant contribution to the enzymatic Co-C bond activation presumably comes through stabilization of the Co(2+)Cbl/Ado. post-homolysis products.
Collapse
Affiliation(s)
- Amanda J Brooks
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- P A Watkins
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Methylmalonyl-CoA mutase induction by cerebral ischemia and neurotoxicity of the mitochondrial toxin methylmalonic acid. J Neurosci 1996. [PMID: 8929440 DOI: 10.1523/jneurosci.16-22-07336.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differential screening of gerbil brain hippocampal cDNA libraries was used to search for genes expressed in ischemic, but not normal, brain. The methylmalonyl-CoA mutase (MCM) cDNA was highly expressed after ischemia and showed a 95% similarity to mouse and 91% similarity to the human MCM cDNAs. Transient global ischemia induced a fourfold increase in MCM mRNA on Northern blots from both hippocampus and whole forebrain. MCM protein exhibited a similar induction on Western blots of gerbil cerebral cortex 8 and 24 hr after ischemia. Treatment of primary brain astrocytes with either the branched-chain amino acid (BCAA) isoleucine or the BCAA metabolite, propionate, induced MCM mRNA fourfold. Increased concentrations of BCAAs and odd-chain fatty acids, both of which are metabolized to propionate, may contribute to inducing the MCM gene during ischemia. Methylmalonic acid, which is formed from the MCM substrate methylmalonyl-CoA and which inhibits succinate dehydrogenase (SDH), produced dose-related cell death when injected into the basal ganglia of adult rat brain. This neurotoxicity is similar to that of structurally related mitochondrial SDH inhibitors, malonate and 3-nitropropionic acid. Methylmalonic acid may contribute to neuronal injury in human conditions in which it accumulates, including MCM mutations and B12 deficiency. This study shows that methylmalonyl-CoA mutase is induced by several stresses, including ischemia, and would serve to decrease the accumulation of an endogenous cellular mitochondrial inhibitor and neurotoxin, methylmalonic acid.
Collapse
|
10
|
Abstract
This review examines deoxyadenosylcobalamin (Ado-B12) biosynthesis, transport, use, and uneven distribution among living forms. We describe how genetic analysis of enteric bacteria has contributed to these issues. Two pathways for corrin ring formation have been found-an aerobic pathway (in P. denitrificans) and an anaerobic pathway (in P. shermanii and S. typhimurium)-that differ in the point of cobalt insertion. Analysis of B12 transport in E. coli reveals two systems: one (with two proteins) for the outer membrane, and one (with three proteins) for the inner membrane. To account for the uneven distribution of B12 in living forms, we suggest that the B12 synthetic pathway may have evolved to allow anaerobic fermentation of small molecules in the absence of an external electron acceptor. Later, evolution of the pathway produced siroheme, (allowing use of inorganic electron acceptors), chlorophyll (O2 production), and heme (aerobic respiration). As oxygen became a larger part of the atmosphere, many organisms lost fermentative functions and retained dependence on newer, B12 functions that did not involve fermentation. Paradoxically, Salmonella spp. synthesize B12 only anaerobically but can use B12 (for degradation of ethanolamine and propanediol) only with oxygen. Genetic analysis of the operons for these degradative functions indicate that anaerobic degradation is important. Recent results suggest that B12 can be synthesized and used during anaerobic respiration using tetrathionate (but not nitrate or fumarate) as an electron acceptor. The branch of enteric taxa from which Salmonella spp. and E. coli evolved appears to have lost the ability to synthesize B12 and the ability to use it in propanediol and glycerol degradation. Salmonella spp., but not E. coli, have acquired by horizontal transfer the ability to synthesize B12 and degrade propanediol. The acquired ability to degrade propanediol provides the selective force that maintains B12 synthesis in this group.
Collapse
Affiliation(s)
- J R Roth
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
11
|
Drennan CL, Matthews RG, Rosenblatt DS, Ledley FD, Fenton WA, Ludwig ML. Molecular basis for dysfunction of some mutant forms of methylmalonyl-CoA mutase: deductions from the structure of methionine synthase. Proc Natl Acad Sci U S A 1996; 93:5550-5. [PMID: 8643613 PMCID: PMC39284 DOI: 10.1073/pnas.93.11.5550] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inherited defects in the gene for methylmalonyl-CoA mutase (EC 5.4.99.2) result in the mut forms of methylmalonic aciduria. mut- mutations lead to the absence of detectable mutase activity and are not corrected by excess cobalamin, whereas mut- mutations exhibit residual activity when exposed to excess cobalamin. Many of the mutations that cause methylmalonic aciduria in humans affect residues in the C-terminal region of the methylmalonyl-CoA mutase. This portion of the methylmalonyl-CoA mutase sequence can be aligned with regions in other B12 (cobalamin)-dependent enzymes, including the C-terminal portion of the cobalamin-binding region of methionine synthase. The alignments allow the mutations of human methylmalonyl-CoA mutase to be mapped onto the structure of the cobalamin-binding fragment of methionine synthase from Escherichia coli (EC 2.1.1.13), which has recently been determined by x-ray crystallography. In this structure, the dimethylbenzimidazole ligand to the cobalt in free cobalamin has been displaced by a histidine ligand, and the dimethylbenzimidazole nucleotide "tail" is thrust into a deep hydrophobic pocket in the protein. Previously identified mut0 and mut- mutations (Gly-623 --> Arg, Gly-626 --> Cys, and Gly-648 --> Asp) of the mutase are predicted to interfere with the structure and/or stability of the loop that carries His-627, the presumed lower axial ligand to the cobalt of adenosylcobalamin. Two mutants that lead to severe impairment (mut0) are Gly-630 --> Glu and Gly-703 --> Arg, which map to the binding site for the dimethylbenzimidazole nucleotide substituent of adenosylcobalamin. The substitution of larger residues for glycine is predicted to block the binding of adenosylcobalamin.
Collapse
Affiliation(s)
- C L Drennan
- Biophysics Research Division and Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
12
|
Touraine RL, Rolland MO, Divry P, Mathieu M, Guibaud P, Bozon D. A 13-bp deletion (1952 del 13) in the methylmalonyl CoA mutase gene of an affected patient. Hum Mutat 1995; 5:354-6. [PMID: 7627195 DOI: 10.1002/humu.1380050417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Qureshi AA, Rosenblatt DS, Cooper BA. Inherited disorders of cobalamin metabolism. Crit Rev Oncol Hematol 1994; 17:133-51. [PMID: 7818787 DOI: 10.1016/1040-8428(94)90022-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- A A Qureshi
- Department of Human Genetics, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
14
|
Stankovics J, Crane AM, Andrews E, Wu CH, Wu GY, Ledley FD. Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polylysine/DNA complexes. Hum Gene Ther 1994; 5:1095-104. [PMID: 7833369 DOI: 10.1089/hum.1994.5.9-1095] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methylmalonic acidemia resulting from genetic deficiency of methylmalonyl CoA mutase (MCM) is an often fatal metabolic disease. Somatic gene therapy for this disorder may require gene replacement in the liver. We describe overexpression of MCM in the liver of mice after in vivo gene delivery using asialoglycoprotein/polylysine/DNA (ASO/PL/DNA) targeted delivery to the liver of plasmids expressing recombinant MCM. After intravenous administration of the ASO/PL/DNA complex, the vector sequences are cleared from the blood with t1/2 = 2.5 min and > 95% of the vector is taken up by the liver. Vector sequences are cleared from the liver with t1/2 = 1.0-1.3 hr. MCM enzyme activity in the liver increases to levels 30-40% over baseline 6-24 hr after injection. No acute or chronic toxicity was observed. This net level of expression is likely to be therapeutic for MCM if the complex could be administered repetitively to treat acute episodes of life-threatening acidosis or establish a steady-state level of MCM activity. Repetitive administration of the ASO/PL/DNA complexes in mice was associated with formation of antibodies against asialo-orosomucoid and the asialo-orosomucoid complex but not against DNA.
Collapse
Affiliation(s)
- J Stankovics
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Coenzyme A (CoASH) has a clearly defined role as a cofactor for a number of oxidative and biosynthetic reactions in intermediary metabolism. Formation of acyl-CoA thioesters from organic carboxylic acids activates the acid for further biotransformation reactions and facilitates enzyme recognition. Xenobiotic carboxylic acids can also form CoA-thioesters, and the resulting acyl-CoA may contribute to the compound's toxicity. Generation of an unusual or poorly-metabolized acyl-CoA from a xenobiotic may lead to cellular metabolic dysfunction through several types of mechanisms including: (1) inhibition of key metabolic enzymes by the acyl-CoA; (2) sequestration of the total cellular CoA pool as the unusual acyl-CoA; (3) physical-chemical effects of the acyl-CoA; and (4) sequestration and depletion of carnitine as the acyl group is transformed from the acyl-CoA to form the corresponding acylcarnitine. Many of these toxicities are similar to sequelae observed in the inherited organic acidurias in which endogenously-generated acyl-CoAs accumulate secondary to an enzymopathy. Insights into the cellular mechanisms of xenobiotic acyl-CoA accumulation have been derived from model systems developed to understand organic acidemias, such as the methylmalonyl-CoA accumulation of the methylmalonic acidurias. The relevance of acyl-CoA accretion to human pathophysiology has now been well established, and identification of the relevant mechanism of toxicity can allow implementation of strategies to minimize the metabolic injury. Additionally, recognition of the potential for acyl-CoA mediated xenobiotic injury should result in improved rational drug design and earlier recognition of such toxicity when it develops.
Collapse
Affiliation(s)
- E P Brass
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4981
| |
Collapse
|
16
|
Wilkemeyer MF, Andrews ER, Ledley FD. Genomic structure of murine methylmalonyl-CoA mutase: evidence for genetic and epigenetic mechanisms determining enzyme activity. Biochem J 1993; 296 ( Pt 3):663-70. [PMID: 7904153 PMCID: PMC1137748 DOI: 10.1042/bj2960663] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Methylmalonyl-CoA mutase (MCM) is a nuclear-encoded mitochondrial matrix enzyme. We have reported characterization of murine MCM and cloning of a murine MCM cDNA and now describe the murine Mut locus, its promoter and evidence for tissue-specific variation in MCM mRNA, enzyme and holo-enzyme levels. The Mut locus spans 30 kb and contains 13 exons constituting a unique transcription unit. A B1 repeat element was found in the 3' untranslated region (exon 13). The transcription initiation site was identified and upstream sequences were shown to direct expression of a reporter gene in cultured cells. The promoter contains sequence motifs characteristic of: (1) TATA-less housekeeping promoters; (2) enhancer elements purportedly involved in co-ordinating expression of nuclear-encoded mitochondrial proteins; and (3) regulatory elements including CCAAT boxes, cyclic AMP-response elements and potential AP-2-binding sites. Northern blots demonstrate a greater than 10-fold variation in steady-state mRNA levels, which correlate with tissue levels of enzyme activity. However, the ratio of holoenzyme to total enzyme varies among different tissues, and there is no correlation between steady-state mRNA levels and holoenzyme activity. These results suggest that, although there may be regulation of MCM activity at the level of mRNA, the significance of genetic regulation is unclear owning to the presence of epigenetic regulation of holoenzyme formation.
Collapse
Affiliation(s)
- M F Wilkemeyer
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | |
Collapse
|
17
|
Shevell MI, Matiaszuk N, Ledley FD, Rosenblatt DS. Varying neurological phenotypes among muto and mut- patients with methylmalonylCoA mutase deficiency. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:619-24. [PMID: 7681251 DOI: 10.1002/ajmg.1320450521] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MethylmalonylCoA mutase (MCM) is a mitochondrial homodimer responsible for the isomerization of methylmalonylCoA to succinylCoA. Apomutase defects are traditionally divided into muto and mut- classes on the basis of residual mutase activity. Clinical findings were reviewed in 20 patients with methylmalonic aciduria secondary to MCM deficiency. All 11 muto patients had an early neonatal presentation; 6 of these patients died in infancy and 3 of 5 survivors had a poor neurological outcome as evidenced by severe delay or spastic quadriparesis with dystonia. The 2 other survivors include a 27-month-old child with a mild delay in verbal and fine motor skills and an adolescent with low normal intelligence. Of the 9 mut- patients, 7 became symptomatic in late infancy or childhood and 2 were picked up on screening. Two of the 9 patients have never had an episode of metabolic decompensation yet both are neurologically compromised; one severely retarded and autistic, the other mildly delayed. Four mut- patients have had episodic acidosis and are neurologically moderately affected, while 3 have had episodic acidosis and are neurologically intact. These results confirm phenotypic pleomorphism without a consistent pattern of neurological injury and suggest some broad correlation between mutase class and phenotype. Survival with good outcome is possible among muto patients as is significant morbidity among mut- patients. Acidosis and metabolic imbalance are not necessary preconditions for significant morbidity.
Collapse
Affiliation(s)
- M I Shevell
- Division of Pediatric Neurology, Montreal Children's Hospital, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Sawada T, Ledley FD. Correction of methylmalonyl-CoA mutase deficiency inMut o fibroblasts and constitution of gene expression in primary human hepatocytes by retroviral-mediated gene transfer. ACTA ACUST UNITED AC 1992; 18:507-16. [PMID: 1363156 DOI: 10.1007/bf01232647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methylmalonic acidemia is an often fatal inborn error of organic acid metabolism due to deficiency of methylmalonyl-CoA mutase. The cloning of genes encoding this enzyme and the advent of technologies for gene transfer have introduced the possibility of somatic gene therapy for this disorder. Gene therapy may require replacement of the defective enzyme in hepatocytes, which have a greater capacity for propionate metabolism than other somatic cells and represent the principle physiological site of propionate metabolism. We describe construction of an amphotropic retroviral vector containing the human methylmalonyl-CoA mutase cDNA. This vector is shown to transduce primary MCM-deficient fibroblasts and restore levels of [14C]propionate metabolism by cultures of nonselected cells to normal. This vector will transduce primary human hepatocytes and direct transcription of recombinant human MCM from the integrated provirus. This work demonstrates the feasibility of retroviral-mediated gene transfer of methylmalonyl-CoA mutase into primary human cells, including hepatocytes which represent a difficult, but potentially necessary, target for gene therapy of methylmalonic acidemia.
Collapse
Affiliation(s)
- T Sawada
- Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
19
|
Crane AM, Martin LS, Valle D, Ledley FD. Phenotype of disease in three patients with identical mutations in methylmalonyl CoA mutase. Hum Genet 1992; 89:259-64. [PMID: 1351030 DOI: 10.1007/bf00220536] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously identified a mutation in the gene for methylmalonyl CoA mutase in a patient with the mut- phenotype of methylmalonic aciduria. This mutation (G717V) interferes with the binding of the deoxyadenosylcobalamin cofactor to the apoenzyme producing a mutant holoenzyme that is defective, but not completely inactive, in vitro. This report describes the clinical phenotype associated with this mutation in the original patient and two additional patients who are homozygous for this allele. All three patients presented in the first years of life with multiple episodes of life-threatening organic acidosis and hyperammonemia. None had evidence of disease in the perinatal period, and all three have low-normal intelligence. These three children exhibit a distinctive phenotype of disease that is intermediate between the fulminant and benign forms of methylmalonic aciduria. These data suggest that this phenotype is the specific consequence of the G717V mutation, and that the degree of residual enzyme activity associated with the G717V mutation is close to the threshold required in vivo for maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- A M Crane
- Department of Cell Biology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
20
|
Crane AM, Jansen R, Andrews ER, Ledley FD. Cloning and expression of a mutant methylmalonyl coenzyme A mutase with altered cobalamin affinity that causes mut- methylmalonic aciduria. J Clin Invest 1992; 89:385-91. [PMID: 1346616 PMCID: PMC442864 DOI: 10.1172/jci115597] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Distinct genotypic and phenotypic forms of methylmalonyl CoA mutase (MCM) apoenzyme deficiency can be delineated by biochemical analysis of mutant fibroblasts. One form, designated mut-, expresses a phenotype in which residual enzyme activity is evident in cultured cells exposed to high concentrations of hydroxycobalamin. We describe cloning of an MCM cDNA from cells exhibiting a mut- phenotype and characterization of the mutant gene product overexpressed in primary muto human fibroblasts and Saccharomyces cerevisiae. Three novel base changes were observed. Recombinant clones containing one of these base changes (G717V) express four characteristics of the mut- phenotype: failure to constitute [14C]propionate incorporation activity in fibroblasts assayed under basal cell culture conditions, constitution of [14C]propionate incorporation activity in fibroblasts stimulated with 0.1-1.0 micrograms/ml hydroxycobalamin, interallelic complementation with alleles bearing an R93H mutation, and an apparent Km (adenosylcobalamin) 1,000-fold higher than normal. These results demonstrate that the G717V mutation produces the mut- phenotype and localizes determinants for adenosylcobalamin binding near the carboxyl terminus of MCM.
Collapse
Affiliation(s)
- A M Crane
- Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
21
|
Ledley FD, Woo SL, Ferry GD, Whisennand HH, Brandt ML, Darlington GJ, Demmler GJ, Finegold MJ, Pokorny WJ, Rosenblatt H. Hepatocellular transplantation in acute hepatic failure and targeting genetic markers to hepatic cells. Hum Gene Ther 1991; 2:331-58. [PMID: 1665349 DOI: 10.1089/hum.1991.2.4-331] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Orthotopic liver transplantation (OLT) represents the only therapeutic option for many patients with end-stage liver disease as well as many inborn genetic errors of hepatic metabolism. Despite dramatic progress in methods for OLT, the utilization of this procedure is limited by its considerable morbidity and mortality, by a chronic shortage of organs for transplant, and by difficulty arranging funding for many patients. Many children with fulminant hepatic failure do not receive OLT because this technology is unavailable or unaffordable. Hepatocellular transplantation (HCT), in which isolated, heterologous hepatocytes from a donor liver would be infused into the diseased organ in order to provide essential hepatic functions, could provide a much needed therapeutic alternative to OLT in the treatment of some causes of hepatic insufficiency. Experiments in animals have demonstrated that several genetic deficiencies of hepatic metabolism as well as experimental induced hepatic failure in animals can be reversed by HCT. Despite this experience, HCT has never been attempted in human subjects. This protocol represents the first proposed clinical trial of HCT. We are proposing a clinical trial in which HCT would be attempted as a therapeutic intervention in children with acute hepatic failure who have no other medical or surgical options. This proposal is intended to establish surgical methods for HCT and to evaluate the feasibility of this procedure for treating hepatic disease in humans. It is our expectation that HCT may provide short-term support for patients awaiting organ availability, a "bridge to recovery" allowing patients with fulminant hepatic failure to recover, or a long-term repopulation of the patient's liver with healthy donor cells. One of the major limitations of many animal studies in HCT is that, since the donor hepatocytes are often indistinguishable from those of the host, it has often been difficult to demonstrate a clear correlation between engraftment and the therapeutic effect. In order to verify engraftment independent of the therapeutic response, we propose to "mark" the donor hepatocytes by transducing these cells with a recombinant retroviral vector (LNL6) carrying a marker gene (NEO-R, neomycin phosphoribosyl transferase). The presence of this marker will enhance the ability to identify transplanted cells in the host using assays for the NEO-R gene or transcribed NEO-R mRNA. The LNL6 vector has been approved for human use and has been used as a marker gene for transplanted cells in human subjects without any reported adverse effects. We would like to emphasize that this is a proposal with therapeutic intent.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F D Ledley
- Baylor College of Medicine, Department of Cell Biology, Houston, TX
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shapira SK, Ledley FD, Rosenblatt DS, Levy HL. Ketoacidotic crisis as a presentation of mild ("benign") methylmalonic acidemia. J Pediatr 1991; 119:80-4. [PMID: 2066863 DOI: 10.1016/s0022-3476(05)81045-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S K Shapira
- Division of Genetics, Children's Hospital, Joseph P. Kennedy, Jr., Laboratories of the Neurology Service, Massachusetts General Hospital, Boston
| | | | | | | |
Collapse
|
23
|
Wilkemeyer MF, Crane AM, Ledley FD. Differential diagnosis of mut and cbl methylmalonic aciduria by DNA-mediated gene transfer in primary fibroblasts. J Clin Invest 1991; 87:915-8. [PMID: 1671869 PMCID: PMC329882 DOI: 10.1172/jci115098] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methylmalonic aciduria can be caused by mutations in the gene encoding the methylmalonyl coenzyme A mutase apoenzyme (mut) or genes required for the provision of cofactor B12 (cbl). The mut and cbl forms are classically differentiated by somatic cell complementation. We describe a novel method for differential diagnosis of mut and cbl methylmalonic aciduria using DNA-mediated gene transfer of a methylmalonyl CoA mutase cDNA clone. Gene transfer of a functional methylmalonyl CoA mutase cDNA clone into mut fibroblasts reconstitutes holoenzyme activity measured by metabolism of [14C]-propionate in culture. Identical gene transfers into cbl fibroblasts have no effect. This method is used for the differential diagnosis of mut and cbl genotypes in cells from patients with a clinical diagnosis of methylmalonic aciduria and is shown to be a facile, sensitive, and specific method for genetic diagnosis. This work establishes the principle of using DNA-mediated gene transfer to identify the genotype of diseases which can result from mutations at several different genetic loci. This type of differential genotypic diagnosis will be particularly important for establishing the applicability of somatic gene therapy in individual patients.
Collapse
Affiliation(s)
- M F Wilkemeyer
- Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|