1
|
Luminescent Chemosensor Based on Ru(II) Bipyridine Complex for Detection of Sudan I through Inner Filter Effect. J Fluoresc 2020; 30:1543-1551. [PMID: 32803523 DOI: 10.1007/s10895-020-02602-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 02/04/2023]
Abstract
Presence of Sudan I in food stuff can be problematic and need to be checked in order to protect our health from possible carcinogen. Therefore, it is essential to detect Sudan I by efficient, rapid and reliable method. In this work, we have designed a Ru(II) polypyridyl complex, [Ru(bpy)2(CIP)]2+ probe for the selective and sensitive detection of Sudan I. Upon addition of Sudan I to the solution of [Ru(bpy)2(CIP)]2+ in ethanol, the luminescence quenched rapidly, and linear concentration range with analyte has been obtained from 0.8 to 100 μM with the limit of detection as low as 0.26 μM (S/N = 3). The effective luminescence quenching was resulted due to the inner filter effect (IFE) between luminophore, [Ru(bpy)2(CIP)]2+ and quencher, Sudan I. Our spectroscopic study was essentially provided sufficient analytical evidences in order to prove occurrence of IFE mechanism. As there were no interferences observed in luminescence measurement from the other substances the present probe has been successfully applied for the detection of Sudan I in commercial chili powder sample, making the probe suitable for practical usage.
Collapse
|
2
|
Quinolone Complexes with Lanthanide Ions: An Insight into their Analytical Applications and Biological Activity. Molecules 2020; 25:molecules25061347. [PMID: 32188087 PMCID: PMC7144119 DOI: 10.3390/molecules25061347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Quinolones comprise a series of synthetic bactericidal agents with a broad spectrum of activity and good bioavailability. An important feature of these molecules is their capacity to bind metal ions in complexes with relevant biological and analytical applications. Interestingly, lanthanide ions possess extremely attractive properties that result from the behavior of the internal 4f electrons, behavior which is not lost upon ionization, nor after coordination. Subsequently, a more detailed discussion about metal complexes of quinolones with lanthanide ions in terms of chemical and biological properties is made. These complexes present a series of characteristics, such as narrow and highly structured emission bands; large gaps between absorption and emission wavelengths (Stokes shifts); and long excited-state lifetimes, which render them suitable for highly sensitive and selective analytical methods of quantitation. Moreover, quinolones have been widely prescribed in both human and animal treatments, which has led to an increase in their impact on the environment, and therefore to a growing interest in the development of new methods for their quantitative determination. Therefore, analytical applications for the quantitative determination of quinolones, lanthanide and miscellaneous ions and nucleic acids, along with other applications, are reviewed here.
Collapse
|
3
|
Galkina PА, Proskurnin МА. Supramolecular interaction of transition metal complexes with albumins and DNA: Spectroscopic methods of estimation of binding parameters. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Polina А. Galkina
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| | - Мikhail А. Proskurnin
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| |
Collapse
|
4
|
Mirzajani R, Pourreza N, Burromandpiroze J. Fabrication of magnetic Fe 3O 4@nSiO 2@mSiO 2-NH 2 core-shell mesoporous nanocomposite and its application for highly efficient ultrasound assisted dispersive µSPE-spectrofluorimetric detection of ofloxacin in urine and plasma samples. ULTRASONICS SONOCHEMISTRY 2018; 40:101-112. [PMID: 28946397 DOI: 10.1016/j.ultsonch.2017.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
In this research, a sensitive, simple and rapid ultrasound assisted dispersive micro solid-phase extraction (USAD-µSPE) was developed using a synthesized core-shell magnetic mesoporous nanocomposite (Fe3O4@nSiO2@mSiO2-NH2) as an efficient adsorbent for the preconcentration and spectrofluorometric determination of ofloxacin (OFL) in biological samples. The synthesized adsorbent was characterized using FT-IR spectroscopy, transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) analysis. The application of this magnetic nanocomposite as a sensitive solid phase for removal, preconcentration and spectrofluorometric quantification of trace amount of OFL was developed. Influence of various variables including pH, sorbent dosage, desorption solvent properties and sonication time on present method response was studied and optimized. The results showed that using the proposed method OFL can be determined in the linear concentration range of 1.0-500.0µgL-1 with a limit of detection as low as 0.21µgL-1 and relative standard deviation less than 2.5 (%). The results of human urine and blood plasma analysis showed that the method is a good candidate for biological sample analysis purposes.
Collapse
Affiliation(s)
- Roya Mirzajani
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Nahid Pourreza
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jafar Burromandpiroze
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Smith ZM, Kerr E, Doeven EH, Connell TU, Barnett NW, Donnelly PS, Haswell SJ, Francis PS. Analytically useful blue chemiluminescence from a water-soluble iridium(III) complex containing a tetraethylene glycol functionalised triazolylpyridine ligand. Analyst 2016; 141:2140-4. [PMID: 26915962 DOI: 10.1039/c6an00141f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examine [Ir(df-ppy)2(pt-TEG)](+) as the first highly water soluble, blue-luminescent iridium(III) complex for chemiluminescence detection. Marked differences in selectivity were observed between the new complex and the conventional [Ru(bpy)3](2+) reagent, which will enable this mode of detection to be extended to new areas of application.
Collapse
Affiliation(s)
- Zoe M Smith
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia.
| | - Emily Kerr
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia.
| | - Egan H Doeven
- Centre for Regional and Rural Futures. Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Timothy U Connell
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia. and School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Neil W Barnett
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia.
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stephen J Haswell
- Centre for Regional and Rural Futures. Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia.
| |
Collapse
|
6
|
A new homoleptic coordination compound of ruthenium and norfloxacin and its interaction with human serum albumin. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2015.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Kaur K, Singh B, Malik AK. Chemiluminescence and Spectrofluorimetric Methods for Determination of Fluoroquinolones: A Review. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.520392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liu YM, Mei L, Yue HY, Shi YM, Liu LJ. Highly Sensitive Chemiluminescence Detection of Norfloxacin and Ciprofloxacin in CE and Its Applications. Chromatographia 2010. [DOI: 10.1365/s10337-010-1648-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Affiliation(s)
- R K Gilpin
- Brehm Research Laboratory University Park, Wright State University, Fairborn, Ohio 45324-2031, USA
| | | |
Collapse
|
10
|
Liu YM, Shi YM, Liu ZL. Determination of enoxacin and ofloxacin by capillary electrophoresis with electrochemiluminescence detection in biofluids and drugs and its application to pharmacokinetics. Biomed Chromatogr 2009; 24:941-7. [DOI: 10.1002/bmc.1389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|