1
|
Zhao B, Li Y, Zhao Y, Ma Y, Li F, Han H, Wang N, Wang X. A sensing platform based on zinc-porphyrin derinative in hexadecyl trimethyl ammonium bromide (CTAB) microemulsion for highly sensitive detection of theophylline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121592. [PMID: 35878493 DOI: 10.1016/j.saa.2022.121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
A new porphyrin-based sensing platform in hexadecyl trimethyl ammonium bromide (CTAB) microemulsion is developed for highly sensitive detection of theophylline. In this sensing system, the zinc-porphyrin-cinnamic acid conjugate (Zn-TPPCA) works as fluorescence probe while theophylline can decrease fluorescence intensity of the probe. Further studies indicate the linear relationship between the fluorescence quenching value and the concentration of theophylline within a given range. And the introduction of CTAB microemulsion can greatly enhance sensibility and stability of this detecting system and facilitate the detection of theophylline. On the basis above, a highly sensitive sensing platform for theophylline is created with a low limit of detection (LOD) of 0.0083 μg mL-1 under the optimal detection conditions. And further application of this method in determination of commercially available theophylline preparation shows excellent results. Subsequent studies on quenching mechanism indicate that static quenching appears between Zn-TPPCA and theophylline. Therefore, this work provides not only a highly sensitive method for determination of theophylline but also further evidence for creation of biosensors for drugs with porphyrin derivatives.
Collapse
Affiliation(s)
- Baojuan Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, PR China; Tianjin Tianhaoyuan Technology Co., Ltd, Tianjin 300450, PR China
| | - Yuancui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, PR China
| | - Yunhan Zhao
- 1(st) Department of Clinical Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yan Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, PR China
| | - Fengjuan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, PR China
| | - Hongli Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, PR China
| | - Na Wang
- Technology R&D Center, China Tobacco Hubei Industrial Corporation, Wuhan 430040, PR China.
| | - Xiang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Soltani N, Manzoori J, Amjadi M, Lotfipour F, Jouyban A. Development and Validation of A Spectrofluorimetric Determination of Calf Thymus DNA Using a Terbium-Danofloxacin Probe. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
3
|
Wu D, Li R, Fan D, Zhang Y, Wei Q. Sensitive determination of protein using terbium-metalloporphyrin as a fluorescence probe in AOT microemulsion. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Alarfaj NA, El-Tohamy MF. Applications of micelle enhancement in luminescence-based analysis. LUMINESCENCE 2014; 30:3-11. [PMID: 24802358 DOI: 10.1002/bio.2694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/24/2014] [Accepted: 03/26/2014] [Indexed: 11/07/2022]
Abstract
Micelles are self-assembled aggregates that arrange themselves into spheres in aqueous media. When the surfactant concentration reaches the critical micelle concentration, extensive aggregation of the surfactant monomers occurs to form micelles. A micelle has both a hydrophilic and a hydrophobic part. This allows them to form a spherical shape and for their glycolipid and phospholipid components to form lipid bilayers. The importance of micelles is increasing because of their wide analytical applications. Recently, colloidal carrier systems have received much attention in the field of analytical chemistry, especially in luminescence enhancement applications.
Collapse
Affiliation(s)
- Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | | |
Collapse
|