Ameen MA, Arif GK. Structural and spectroscopic study of Ho
3+ -doped nanotitania host prepared using a sol-gel technique.
LUMINESCENCE 2020;
35:1109-1117. [PMID:
32542837 DOI:
10.1002/bio.3823]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 11/08/2022]
Abstract
Holmium (Ho3+ )-doped TiO2 solid laser active materials with different concentrations (1, 3, 5, and 7 wt%) of Ho3+ ions were prepared using a sol-gel method. A structural study of the samples using X-ray diffraction (XRD) revealed the anatase phase of pure and doped TiO2 calcined at 500°C, which is confirmed by (101), (004), (200), (105), (211), (204), (116), (220) and (215) diffraction peaks. XRD analysis showen a deformation along the c-axis of the anatase lattice constant with doping, and a random change in the grain size of the doped titania with respect to pure samples. The presence of the titania bonds (Ti-O-Ti) and (Ti-O) of pure and Ho3+ -doped samples were confirmed from the FTIR spectroscopy study of the samples. In addition, it was noted that bands around 1338, and 1339 cm-1 belonging to 3, 5, and 7 wt% dopant concentrations, while no band for 1 wt% was observed. UV-Vis spectrophotometer and spectrofluorophotometer techniques were used to study the optical and spectroscopic characterizations of these samples. It was found that various fluorescence peaks for Ho3+ ions were observed in the UV-vis region under different pump wavelengths. This is a good indication of suitability of the material to be employed as a laser active medium.
Collapse