Yellow Emissive Tris(8-hydroxyquinoline) Aluminum by the Incorporation of ZnO Quantum Dots for OLED Applications.
MICROMACHINES 2021;
12:mi12101173. [PMID:
34683224 PMCID:
PMC8538630 DOI:
10.3390/mi12101173]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Tris(8-hydroxyquinoline) aluminum complexes are of significant interest because of their remarkable optical and electrical properties, both as an emissive layer and electron injection layer. They emit light in the blue and green ranges of the visible spectrum, so for white organic light emitting diodes (OLEDs), yellow emission is required as well. In this study, we propose the use of zinc oxide quantum dots to tune the emission color of the complex while maintaining its luminous efficiency. Hence, tris(8-hydroxyquinoline) aluminum-zinc oxide nanohybrids with different zinc oxide quantum dots concentrations (10, 20, or 30 wt.%) were synthesized. The structural properties were characterized using powder X-ray diffraction analysis, while the composition and optical characteristics were characterized by Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, and photoluminescence emission spectroscopy. The results show that increased levels of zinc oxide quantum dots lead to a decrease in crystallinity, double hump emission and a slight red shift in emission peaks. Also, at 20 and 30 wt.% of zinc oxide quantum dots concentrations, yellow emission was observed.
Collapse