1
|
Ruan M, Zhang B, Wang J, Fan G, Lu X, Zhang J, Zhao W. A resorufin-based fluorescent probe for hydrazine detection and its application in environmental analysis and bioimaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6412-6416. [PMID: 37965731 DOI: 10.1039/d3ay01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hydrazine (N2H4) is an important industrial raw material that has been widely used in industrial production and agricultural interventions, but its widespread application also inevitably causes environmental pollution. In this study, based on resorufin, we constructed a novel "turn-on" fluorescent probe RFT for the selective detection of hydrazine under complex environmental conditions and in vivo. The probe RFT exhibited excellent stability and selectivity towards the detection of hydrazine with a low detection limit of 260 nM. In addition, RFT was successfully applied to the detection of hydrazine in environmental water samples and living cells. Most importantly, RFT could not only detect the exogenous hydrazine in zebrafish and mice, but also image and visualize the up-regulation of endogenous hydrazine induced by isoniazid in zebrafish.
Collapse
Affiliation(s)
- Minghao Ruan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China.
| | - Guanwen Fan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
2
|
Wang Y, Yan Q, Wang Z, Xu H. A flavonol-derived fluorescent probe for highly specific and sensitive detection of hydrazine in actual environmental samples and living zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122132. [PMID: 36442340 DOI: 10.1016/j.saa.2022.122132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Hydrazine (N2H4) is a significant chemical reagent and widely applied in industrial field, which can bring potential risk to environmental safety and human health due to its high toxicity and potential carcinogenicity. In this paper, a flavonol-derived fluorescent probe named TB-N2H4 was rationally developed for detecting N2H4 based on the excited intramolecular proton transfer (ESIPT) principle. TB-N2H4 exhibited a remarkable fluorescence turn-on response toward N2H4 with a large Stokes shift of 191 nm. Moreover, TB-N2H4 could selectively recognize N2H4 over other competitive analytes, and displayed high sensitivity toward N2H4 with a low detection limit of 0.117 μM. The sensing mechanism of the probe TB-N2H4 for N2H4 was confirmed by theoretical calculation and HRMS analysis. This probe was able to quantitatively determine N2H4 in environmental water and soil samples. Additionally, TB-N2H4 was also successfully utilized for real-time tracking of the distribution of N2H4 in living zebrafish.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhonglong Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
A coumarin-based fluorescent probe for hydrazine detection and its applications in real water samples and living cells. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Pan J, Ma J, Liu H, Zhang Y, Lu L. The preparation of a special fluorescent probe with an aggregation-induced emission effect for detecting hydrazine in water. NEW J CHEM 2021. [DOI: 10.1039/d1nj03498g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel phenyl-carbazole fluorescent molecule, PCBI, with an AIE effect is used as an excellent special probe for the detection of N2H4 in a DMF–H2O system.
Collapse
Affiliation(s)
- Jiamin Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jie Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Luyu Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
5
|
Han J, Yue X, Wang J, Zhang Y, Wang B, Song X. A ratiometric merocyanine-based fluorescent probe for detecting hydrazine in living cells and zebra fish. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Wang X, Ding G, Duan Y, Zhu Y, Zhu G, Wang M, Li X, Zhang Y, Qin X, Hung CH. A novel triphenylamine-based bis-Schiff bases fluorophores with AIE-Activity as the hydrazine fluorescence turn-off probes and cell imaging in live cells. Talanta 2020; 217:121029. [PMID: 32498835 DOI: 10.1016/j.talanta.2020.121029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Developing a specific and sensitive method for endogenous hydrazine detection in living systems is valuable to understand its various pathological events. In this work, two novel fluorescent chemosensors (C1, C3) based on triphenylamine Schiff-base derivative and reference dyes (C2, C4) were prepared in relatively high yield (more than 72% yield). The aggregation induced emission (AIE) properties of sensors were investigated through UV-Visible, dynamic light scattering, X-ray diffraction, fluorescence spectrophotometric analyses as well as scanning electron microscope images (SEM). The results indicated that probes C1 and C3 exhibited strong AIE property in DMF/H2O (1:1, v/v) mixture system with brilliant yellow fluorescence emission (560 nm) observed under 365 nm UV lamp. The experiments of sensing indicated that probes C1 and C3 possessed the sequentially detecting abilities for hydrazine with high sensitivity, specificity as well as an extremely low detection limit (55.1 nM), which was due to blocking of AIE process of probes C1 and C3 by special chemical reaction (-CHN- moiety transformed into -CH2-NH- group) after hydrazine addition, resulting in the increase in water solubility and a weak emission in aqueous media. Furthermore, 1H NMR, SEM and fluorescence titration experiment was also conducted to confirm the sensing mechanism. For biological application, probes C1 and C3 presented a good bio-imaging performance and showed the similar fluorescence quenching after adding hydrazine. Therefore, the probes are suitable for the fluorescence imaging of exogenous hydrazine in HeLa cells.
Collapse
Affiliation(s)
- Xinchao Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Ge Ding
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Yuanke Duan
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Yinjun Zhu
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Guangshi Zhu
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Min Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Xiujuan Li
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Yanfen Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Xiaozhuan Qin
- Zhengzhou Institute of Technology, School of Chemical Engineering & Food Science, Henan, Zhengzhou, 450044, China
| | - Cheung-Hin Hung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Zhu M, Xu Y, Sang L, Zhao Z, Wang L, Wu X, Fan F, Wang Y, Li H. An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113427. [PMID: 31672354 DOI: 10.1016/j.envpol.2019.113427] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
As a strong reductant and highly active alkali, hydrazine (N2H4) has been widely used in chemical industry, pharmaceutical manufacturing and agricultural production. However, its high acute toxicity poses a threat to ecosystem and human health. In the present study, a ratiometric fluorescent probe for the detection of N2H4 was designed, utilizing dicyanoisophorone as the fluorescent group and 4-bromobutyryl moiety as the recognition site. 4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-enyl) phenyl 4-brobutanoate (DDPB) was readily synthesized and could specially sense N2H4 via an intramolecular charge transfer (ICT) pathway. The cyclization cleavage reaction of N2H4 with a 4-bromobutyryl group released phenolic hydroxyl group and reversed the ICT process between hydroxy group and fluorophore, turning on the fluorescence in the DDPB-N2H4 complexes. DDPB exhibits a low cytotoxicity, reasonable cell permeability, a large Stokes shift (186 nm) and a low detection limit (86.3 nM). The quantitative determination of environmental water systems and the visualization fluorescence of DDPB test strips provides a strong evidence for the applications of DDPB. In addition, DDPB is suitable for the fluorescence imaging of exogenous N2H4 in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Meiqing Zhu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Yimin Xu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Linfeng Sang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Zongyuan Zhao
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Lijun Wang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaoqin Wu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Fugang Fan
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Yi Wang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Li M, He J, Wang Z, Jiang Q, Yang H, Song J, Yang Y, Xu X, Wang S. Novel Nopinone-Based Turn-on Fluorescent Probe for Hydrazine in Living Cells with High Selectivity. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | | | | | | |
Collapse
|
9
|
Wu Q, Zheng J, Zhang W, Wang J, Liang W, Stadler FJ. A new quinoline-derived highly-sensitive fluorescent probe for the detection of hydrazine with excellent large-emission-shift ratiometric response. Talanta 2019; 195:857-864. [DOI: 10.1016/j.talanta.2018.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022]
|
10
|
Gawas RU, Anand S, Ghosh BK, Shivbhagwan P, Choudhary K, Ghosh NN, Banerjee M, Chatterjee A. Development of a Water-Dispersible SBA-15-Benzothiazole-Derived Fluorescence Nanosensor by Physisorption and Its Use in Organic-Solvent-Free Detection of Perborate and Hydrazine. ChemistrySelect 2018. [DOI: 10.1002/slct.201802328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ram U. Gawas
- Department of Chemistry; BITS Pilani Goa Campus; Goa - 403726 India
| | - Shivesh Anand
- Department of Chemistry; BITS Pilani Goa Campus; Goa - 403726 India
| | - Barun K. Ghosh
- Department of Chemistry; BITS Pilani Goa Campus; Goa - 403726 India
| | | | - Kushav Choudhary
- Department of Chemistry; BITS Pilani Goa Campus; Goa - 403726 India
| | | | - Mainak Banerjee
- Department of Chemistry; BITS Pilani Goa Campus; Goa - 403726 India
| | | |
Collapse
|
11
|
Shi X, Yin C, Wen Y, Zhang Y, Huo F. A probe with double acetoxyl moieties for hydrazine and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:106-111. [PMID: 29860166 DOI: 10.1016/j.saa.2018.05.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
As a common chemical reductant, hydrazine has been widely used in various fields. However, its high toxicity to human and environment have also attracted people's attention. In this work, a new fluorescence "turn-on" probe based on coumarin for hydrazine was successfully synthesized. The probe with double acetoxyl moieties as the reaction sites can obtain the detection limit as low as 2.98 nM for the detection of hydrazine in distilled water, which was lower than the U.S. Environmental Protection Agency standard (10 ppb). In addition, it also responded obvious fluorescence enhancement and high selectivity to hydrazine over other molecules. Furthermore, this probe could visualize the hydrazine in living cells.
Collapse
Affiliation(s)
- Xinrong Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Nguyen KH, Hao Y, Chen W, Zhang Y, Xu M, Yang M, Liu YN. Recent progress in the development of fluorescent probes for hydrazine. LUMINESCENCE 2018; 33:816-836. [DOI: 10.1002/bio.3505] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Khac Hong Nguyen
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan Province P. R. China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu Henan Province P. R. China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan Province P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu Henan Province P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu Henan Province P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan Province P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan Province P. R. China
| |
Collapse
|
13
|
Lv H, Sun H, Wang S, Kong F. A novel dicyanoisophorone based red-emitting fluorescent probe with a large Stokes shift for detection of hydrazine in solution and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:160-167. [PMID: 29444498 DOI: 10.1016/j.saa.2018.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
A novel dicyanoisophorone based fluorescent probe HP was developed to detect hydrazine. Upon the addition of hydrazine, probe HP displayed turn-on fluorescence in the red region with a large Stokes shift (180nm). This probe exhibited high selectivity and high sensitivity to hydrazine in solution. The detection limit of HP was found to be 3.26ppb, which was lower than the threshold limit value set by USEPA (10ppb). Moreover, the probe was successfully applied to detect hydrazine in different water samples and living cells.
Collapse
Affiliation(s)
- Hongshui Lv
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Haiyan Sun
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shoujuan Wang
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangong Kong
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
14
|
Sohail M, Altaf M, Baig N, Jamil R, Sher M, Fazal A. A new water stable zinc metal organic framework as an electrode material for hydrazine sensing. NEW J CHEM 2018. [DOI: 10.1039/c8nj01507d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic frameworks (MOFs) as direct electrode materials for electrochemical sensing can offer inherent advantages such as containing sensing element and redox mediator in a single molecule.
Collapse
Affiliation(s)
- Manzar Sohail
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Muhammad Altaf
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Nadeem Baig
- Chemistry Department
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Rabia Jamil
- Department of Chemistry
- Allama Iqbal Open University
- Islamabad
- Pakistan
| | - Muhammad Sher
- Department of Chemistry
- Allama Iqbal Open University
- Islamabad
- Pakistan
| | - Atif Fazal
- Center of Research Excellence in Petroleum Refining and Petrochemicals (CoRE-PRP)
- King Fahd University of Petroleum and Minerals
- Dhahran
- Saudi Arabia
| |
Collapse
|
15
|
WANG J, WANG H, YANG S, TIAN H, LIU Y, HAO Y, ZHANG J, SUN B. A Fluorescent Probe for Sensitive Detection of Hydrazine and Its Application in Red Wine and Water. ANAL SCI 2018. [DOI: 10.2116/analsci.34.329] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jialin WANG
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| | - Hao WANG
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| | - Shaoxiang YANG
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| | - Hongyu TIAN
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| | - Yongguo LIU
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| | - Yanfeng HAO
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| | - Jie ZHANG
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| | - Baoguo SUN
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University
| |
Collapse
|