1
|
Lie J, Huang J, You R, Lu Y. Preparation and Application of Magnetic Molecularly Imprinted Plasmonic SERS Composite Nanoparticles. Crit Rev Anal Chem 2023; 54:2940-2959. [PMID: 37289486 DOI: 10.1080/10408347.2023.2219322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnetic molecularly imprinted polymers (MMIPs) are used as artificial antibody materials. MMIPs have attracted a great deal of interest because of their low cost, wide practicality, predetermination, stability and their ability to achieve rapid separation from complex sample environments by the action of external magnetic field. MMIPs can simulate the natural recognition of entities. They are widely used because of their great advantages in terms of high selectivity. In this review article, the preparation methods of Fe3O4 NPs and a detailed summary of the commonly used methods for amination modification of Fe3O4 NPs are introduced, preparation of Ag NPs of different sizes and Au NPs of various shapes and preparation methods of magnetic molecularly imprinted plasmonic SERS composite nanoparticles such as Fe3O4@Ag NPs, Fe3O4/Ag NPs, Fe3O4@Au NPs, Fe3O4/Au NPs, Fe3O4@Au/Ag NPs and Fe3O4@Ag@Au NPs are main summarized. In addition, preparation process and the current application of MMIPs prepared from magnetic molecularly imprinted plasmonic SERS composite nanoparticles incorporating different functional monomers in a nuclear-satellite structure are also presented. Finally, the existing challenges and future prospects of MMIPs in applications are discussed.
Collapse
Affiliation(s)
- Jiansen Lie
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiali Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Li D, Luo K, Zhang L, Gao J, Liang J, Li J, Pan H. Research and Application of Highly Selective Molecular Imprinting Technology in Chiral Separation Analysis. Crit Rev Anal Chem 2021; 53:1066-1079. [PMID: 34802340 DOI: 10.1080/10408347.2021.2002680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Since residual chiral pollutants in the environment and toxic or ineffective chiral components in drugs can threat human health, there is an urgent need for methods to separation and analyze chiral molecules. Molecular imprinting technology (MIT) is a biomimetic technique for specific recognition of analytes with high potential for application in the field of chiral separation and analysis. However, since MIT has some disadvantages when used for chiral recognition, such as poor rigidity of imprinted materials, a single type of recognition site, and poor stereoselectivity, reducing the interference of conformationally and structurally similar substances to increase the efficiency of chiral recognition is difficult. Therefore, improving the rigidity of imprinted materials, increasing the types of imprinted cavity recognition sites, and constructing an imprinted microenvironment for highly selective chiral recognition are necessary for the accurate identification of chiral substances. In this article, the principle of chiral imprinting recognition is introduced, and various strategies that improve the selectivity of chiral imprinting, using derivative functional monomers, supramolecular compounds, chiral assembly materials, and biomolecules, are reviewed in the past 10 years.
Collapse
Affiliation(s)
- Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kui Luo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jingxia Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jinlu Liang
- School of Petroleum and Chemical Engineering, BeiBu Gulf University, Qinzhou, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
4
|
Zhong H, Zhao B, Deng J. Chiral magnetic hybrid materials constructed from macromolecules and their chiral applications. NANOSCALE 2021; 13:11765-11780. [PMID: 34231630 DOI: 10.1039/d1nr01939b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chirality is a fundamental and ubiquitous feature of living organisms in nature. Magnetic materials, in particular magnetic nanoparticles (MNPs), show some interesting properties such as large specific surface area, easy surface modification, magnetic responsivity and separation ability. Integrating MNPs with chirality in a single material will undoubtedly create a large number of advanced multi-functional materials. Despite the great advancements made in this area, there have been no review articles to summarize the relevant studies. The present work reviews the major progress recently made in constructing chiral magnetic hybrid materials (CMHMs) using macromolecules, which are classified based on the primary chiral macromolecular organic components, namely, biological polymers and synthetic polymers, and the applications of the resulting chiral hybrids in chiral research fields, including asymmetric catalysis, enzymatic resolution, chromatographic separation, enantioselective crystallization and enantioselective adsorption, are also summarized. The challenges and prospects of related research fields are proposed in the last section.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | |
Collapse
|
5
|
Zhao X, Wang Y, Zhang P, Lu Z, Xiao Y. Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromol Rapid Commun 2021; 42:e2100004. [PMID: 33749077 DOI: 10.1002/marc.202100004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Molecular imprinting polymers (MIPs), generally considered as artificial mimics that are comparable to natural receptor, are polymers with tailor-made specific recognition sites complementary to the template molecules in shape and size. As a class of supramolecular compounds, cyclodextrins (CDs) are flourishing in the field of molecular imprinting with their unique structural properties. This review presents recent advances in application of MIPs based on CDs during the past five years. The discussion is grouped according to the different role of CDs in MIPs, that is, functional monomer, carrier modifier, etc. Main focus is the application of CD-based MIP on sample preparation, detection, and sensing. Additionally, drug delivery with CD-based MIP is also briefly discussed. Finally, challenges and future prospects of application of CDs in MIP are elaborated.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Pan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhemiao Lu
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Xiao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
7
|
Deng X, Li W, Wang Y, Ding G. Recognition and separation of enantiomers based on functionalized magnetic nanomaterials. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
|
9
|
Wang SY, Li L, Xiao Y, Wang Y. Recent advances in cyclodextrins-based chiral-recognizing platforms. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115691] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Zhu S, Ran P, Wu J, Chen M, Fu Y. An Electrochemiluminesence Chiral Sensor for Propranolol Enantiomers Based on Functionalized Graphite‐like Carbon Nitride Nanosheets. ELECTROANAL 2019. [DOI: 10.1002/elan.201900329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shu Zhu
- Key Laboratory of Luminescent and Real-Time Analytical ChemistrySouthwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
- Lab Teaching & Management CenterChongqing Medical University Chongqing 401331 China
| | - Peiyao Ran
- Key Laboratory of Luminescent and Real-Time Analytical ChemistrySouthwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jingling Wu
- Key Laboratory of Luminescent and Real-Time Analytical ChemistrySouthwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Min Chen
- Key Laboratory of Luminescent and Real-Time Analytical ChemistrySouthwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yingzi Fu
- Key Laboratory of Luminescent and Real-Time Analytical ChemistrySouthwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
11
|
Rico-Yuste A, Carrasco S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers (Basel) 2019; 11:E1173. [PMID: 31336762 PMCID: PMC6681127 DOI: 10.3390/polym11071173] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
We report on the development of new optical sensors using molecularly imprinted polymers (MIPs) combined with different materials and explore the novel strategies followed in order to overcome some of the limitations found during the last decade in terms of performance. This review pretends to offer a general overview, mainly focused on the last 3 years, on how the new fabrication procedures enable the synthesis of hybrid materials enhancing not only the recognition ability of the polymer but the optical signal. Introduction describes MIPs as biomimetic recognition elements, their properties and applications, emphasizing on each step of the fabrication/recognition procedure. The state of the art is presented and the change in the publication trend between electrochemical and optical sensor devices is thoroughly discussed according to the new fabrication and micro/nano-structuring techniques paving the way for a new generation of MIP-based optical sensors. We want to offer the reader a different perspective based on the materials science in contrast to other overviews. Different substrates for anchoring MIPs are considered and distributed in different sections according to the dimensionality and the nature of the composite, highlighting the synergetic effect obtained as a result of merging both materials to achieve the final goal.
Collapse
Affiliation(s)
| | - Sergio Carrasco
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Zanchi C, Lucotti A, Cancogni D, Fontana F, Trusso S, Ossi PM, Tommasini M. Functionalization of nanostructured gold substrates with chiral chromophores for SERS applications: The case of 5-Aza[5]helicene. Chirality 2018; 30:875-882. [PMID: 29852522 DOI: 10.1002/chir.22970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
Nanostructured gold thin films can be fabricated by controlled pulsed laser deposition to get efficient sensors, with uniform morphology and optimized plasmon resonance, to be employed as plasmonic substrates in surface enhanced Raman scattering spectroscopy. By attaching 5-aza[5]helicen-6-yl-6-hexanethiol to such gold nanostructures, used in a previous work for label-free drug sensing with biomedical purposes, we successfully prepared functionalized substrates with remarkable surface enhanced Raman scattering activity. The long-term motivation is to develop probes for drug detection at low concentrations, where sensitivity to specific chiral targets is required.
Collapse
Affiliation(s)
- Chiara Zanchi
- Dip. di Energia, Politecnico di Milano, Milan, Italy.,Dip. di Chimica Materiali e Ing. Chimica, Politecnico di Milano, Milan, Italy
| | - Andrea Lucotti
- Dip. di Chimica Materiali e Ing. Chimica, Politecnico di Milano, Milan, Italy
| | - Damiano Cancogni
- Dip. di Ingegneria e Scienze Applicate, Università di Bergamo, Dalmine, Italy
| | - Francesca Fontana
- Dip. di Ingegneria e Scienze Applicate, Università di Bergamo, Dalmine, Italy.,INSTM Bergamo R.U, Dalmine, Italy
| | | | - Paolo M Ossi
- Dip. di Energia, Politecnico di Milano, Milan, Italy
| | - Matteo Tommasini
- Dip. di Chimica Materiali e Ing. Chimica, Politecnico di Milano, Milan, Italy
| |
Collapse
|