1
|
Goswami N, Naithani S, Goswami T, Kumar P, Kumar S. A quinoline derived Schiff base as highly selective 'turn-on' probe for fluorogenic recognition of Al 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123971. [PMID: 38306922 DOI: 10.1016/j.saa.2024.123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
A quinoline-derived Schiff base QnSb has been synthesized for fluorescent and colorimetric recognition of Al3+ ions in a semi-aqueous medium. The compound QnSb has been characterized by elemental analysis, FT-IR, 1H/13C NMR, UV-Vis and fluorescence spectral techniques. The crystal structure of the QnSb was confirmed by single crystal X-ray diffraction (SC-XRD) analysis. Notably, almost non-fluorescent QnSb served as a 'turn on' responsive probe for Al3+ by inducing a remarkable fluorescence enhancement at 422 nm when excited at 310 nm. The probe QnSb exhibited high selectivity for Al3+ in CH3CN/H2O (4:1, v/v) solution over several competing metal ions (e.g., Mg2+, Pb2+, Zn2+, Cd2+, Co2+, Cu2+, Ca2+, Ni2+, Fe3+/2+, Cr3+, Mn2+, Sn2+, and Hg2+). The limit of detection (LoD) was computed as low as 15.8 nM which is significantly lower than the permissible limit set by WHO for Al3+ ions in drinking water. A 1:1 binding stoichiometry of complex QnSb-Al3+ was established with the help of Job's plot, ESI-MS, NMR and DFT analyses. Based on its remarkable sensing ability, the probe QnSb was utilized to establish molecular logic gates, and the fluorescence detection of Al3+ could clearly be demonstrated on the filter paper test strips.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
2
|
Che H, Tian X, Wang J, Dai C, Nie Y, Li Y, Lu L. A portable and intelligent logic detector for simultaneous and in-situ detection of Al 3+ and fluoride in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131956. [PMID: 37392640 DOI: 10.1016/j.jhazmat.2023.131956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
To develop a convenient and intelligent detector for simultaneous and in-situ detection of Al3+ and F- in groundwater, a novel organic probe called RBP has been prepared. With the increase of Al3+, RBP showed a significant fluorescence enhancement at 588 nm, and the detection limit was 0.130 mg/L. After combining with fluorescent internal standard CDs, the fluorescence of RBP-Al-CDs at 588 nm was quenched due to the replace of F- for Al3+, while the CDs at 460 nm remained unchanged, and the detection limit was 0.0186 mg/L. For convenient and intelligent detection, an RBP-based logic detector has been developed for simultaneous detection of Al3+ and F-. Within the ultra-trace, low concentration, and high concentration range of Al3+ and F-, the logic detector can achieve rapid feedback on their concentration levels ("U", "L" and "H") through different output modes of the signal lamps. The development of logical detector is of great significance for studying the in-situ chemical behavior of Al3+ and F- and for daily household detection.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiahuan Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Liqiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Wang K, Zhang R, Zhao X, Ma Y, Ren L, Ren Y, Chen G, Ye D, Wu J, Hu X, Guo Y, Xi R, Meng M, Yao Q, Li P, Chen Q, James TD. Reversible Recognition-Based Boronic Acid Probes for Glucose Detection in Live Cells and Zebrafish. J Am Chem Soc 2023. [PMID: 37023253 PMCID: PMC10119935 DOI: 10.1021/jacs.2c13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Glucose, a critical source of energy, directly determines the homeostasis of the human body. However, due to the lack of robust imaging probes, the mechanism underlying the changes of glucose homeostasis in the human body remains unclear. Herein, diboronic acid probes with good biocompatibility and high sensitivity were synthesized based on an ortho-aminomethylphenylboronic acid probe, phenyl(di)boronic acid (PDBA). Significantly, by introducing the water-solubilizing group -CN directly opposite the boronic acid group and -COOCH3 or -COOH groups to the β site of the anthracene in PDBA, we obtained the water-soluble probe Mc-CDBA with sensitive response (F/F0 = 47.8, detection limit (LOD) = 1.37 μM) and Ca-CDBA with the highest affinity for glucose (Ka = 4.5 × 103 M-1). On this basis, Mc-CDBA was used to identify glucose heterogeneity between normal and tumor cells. Finally, Mc-CDBA and Ca-CDBA were used for imaging glucose in zebrafish. Our research provides a new strategy for designing efficient boronic acid glucose probes and powerful new tools for the evaluation of glucose-related diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Ruixiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Lijuan Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Youxiao Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Gaofei Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Dingming Ye
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Jinfang Wu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Xinyuan Hu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Qingqiang Yao
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Qixin Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| |
Collapse
|
4
|
Sultana R, Arif R, Rana M, Ahmedi S, Mehandi R, Akrema, Manzoor N, Rahisuddin. Ni (II) detection by 2-amino-5-substituted-1,3,4-oxadiazole as a chemosensor using photo-physical method: Antifungal, antioxidant, DNA binding, and molecular docking studies. LUMINESCENCE 2022; 37:408-421. [PMID: 34986516 DOI: 10.1002/bio.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine and the structural confirmation was supported by 1 H and 13 C NMR, FT-IR spectroscopy, and LC-MS spectrometry. Its sensing ability was examined towards Ni2+ ion with binding constant 1.04 x 105 over the other suitable metal cations (Ca2+ , Co2+ , Cr3+ , Ag+ , Pb2+ , Fe3+ , Mg2+ , and K+ ) by UV-visible and fluorescence spectroscopic studies and the minimum concentration of Ni2+ ion with LOD was found to be 9.4μM. Job's plot method gives the binding stoichiometry ratio of Ni2+ ion vs oxadiazole derivative 2 to be 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with Calf Thymus DNA was supported by UV-Vis, fluorescence, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gives the binding score for oxadiazole derivative 2 to be -6.5 kcal/mol, which further confirms the intercalative interaction. In addition, the anti-fungal activity of oxadiazole derivative 2 was also screened against fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion method. In the antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against DPPH and H2 O2 free radicals.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rizwan Arif
- Department of Chemistry, Lingayas Vidyapeeth, Faridabad, Haryana, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Akrema
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Hoque A, Islam MS, Khan MMA, Ghosh S, Sekh MA, Hussain S, Alam MA. Biphenyl Containing Amido Schiff base Derivative as a Turn-on Fluorescent Chemosensor for Al3+ and Zn2+ ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj03144b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrazine derived Bis(2-hydroxybenzylidene)-[1,1'-biphenyl]-2,2'-dicarbohydrazide (sensor 1) has been synthesized and its sensing properties towards metal ions has been demonstrated using simple UV-visble spectroscopic, fluorometric technique and visible colour change. The...
Collapse
|
6
|
Mabhai S, Dolai M, Dey SK, Choudhury SM, Das B, Dey S, Jana A, Banerjee DR. A naphthalene-based azo armed molecular framework for selective sensing of Al 3+. NEW J CHEM 2022. [DOI: 10.1039/d1nj05869j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A naphthalene-based azo armed molecular derivative was synthesized for sensing of Al3+ and cell imaging studies. The fluorescence enhancement is caused by restricted CN isomerization, CHEF on, and PET-off processes.
Collapse
Affiliation(s)
- Subhabrata Mabhai
- Department of Chemistry, Mahishadal Raj College, East Midnapore, Mahishadal, West Bengal, Pin No. 721628, India
- Department of Chemistry, Tamralipta Mahavidyalaya, East Midnapore, West Bengal, Pin No. 721636, India
- Department of Chemistry, National Institute of Technology, Durgapur, WB, PIN-713209, India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721401, India
| | - Surya Kanta Dey
- Department of Human Physiology with Community Health; Vidyasagar University, Rangamati, Medinipur, West Bengal, Pin No. 721102, India
| | - Sujata Maiti Choudhury
- Department of Human Physiology with Community Health; Vidyasagar University, Rangamati, Medinipur, West Bengal, Pin No. 721102, India
| | - Bhriguram Das
- Department of Chemistry, Tamralipta Mahavidyalaya, East Midnapore, West Bengal, Pin No. 721636, India
- Department of Chemistry, Vidyasagar University, Medinipur, West Bengal, Pin No. 721102, India
| | - Satyajit Dey
- Department of Chemistry, Tamralipta Mahavidyalaya, East Midnapore, West Bengal, Pin No. 721636, India
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology, Durgapur, WB, PIN-713209, India
| |
Collapse
|
7
|
Zhengfeng Xie, Hao Y, Li Z, Sun F, Ma J, Chen X, Shi W, Feng S. A Novel 2-Phenyl-1,2,3-Triazole Derived Fluorescent Probe for Recyclable Detection of Al3+ in Aqueous Medium and Its Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Xie Y, Li X, Yan L, Li J. A highly selective aggregation-induced emission fluorogen for sensitive detection of Al 3+ in living cells. LUMINESCENCE 2019; 35:156-162. [PMID: 31507081 DOI: 10.1002/bio.3708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023]
Abstract
A Schiff's base derivative was synthesized using a condensation reaction between 8-formyl-7-hydroxy-4-methylcoumarin and furan-2-carbohydrazide that produced marked aggregation-induced emission and had excellent ability to specifically recognize aluminium ions (Al3+ ). This compound displayed faint fluorescence in the benign solvent dimethyl formamide, and exhibited obvious green fluorescence following addition of specific amounts of water. Moreover, it exhibited strong blue fluorescence after combination with Al3+ even in the presence of other interfering ions. These experimental results demonstrated that this derivative could be used as a fluorescence probe for Al3+ . The advantages, including significant fluorescence change, high selectivity and sensitivity, and fast response, meant that this probe could be used both to detect Al3+ in water samples and for fluorescence imaging in living cells.
Collapse
Affiliation(s)
- Ya Xie
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| | - Xueming Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| | - Liqiang Yan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| | - Jianping Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
9
|
Zhang M, Gong L, Sun C, Li W, Chang Z, Qi D. A new fluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr 3+, Cu 2+, Fe 3+ and Al 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:7-13. [PMID: 30743073 DOI: 10.1016/j.saa.2019.01.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
A new Schiff base derivative fluorescence-colorimetric chemosensor 2-hydroxy-5-[(2-hydroxy-1-naphthyl)methylideneamino]benzoic acid (H3L), has been designed and synthesized. H3L displayed high selectivity and sensitivity for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions in DMF/H2O (v/v = 1/1) solution. When Cr3+, Cu2+ or Fe3+ ions were added, the solution of H3L in DMF/H2O exhibited different color changes. While with the addition of Fe3+ or Al3+ ions, the solution of H3L in DMF/H2O displayed different fluorescence responses. The bonding modes and bonding ratios of H3L and metal ions were explored by the Job's plot, 1H NMR titration, and electrospray ionization mass spectrometry (ESI-MS). The detection limits of H3L with Cr3+, Cu2+, Fe3+and Al3+ ions were 3.37 × 10-7 M, 4.65 × 10-7 M, 3.58 × 10-7 M and 4.89 × 10-7 M, respectively.
Collapse
Affiliation(s)
- Min Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Changyan Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wenjun Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhidong Chang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Dongdong Qi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
10
|
Kong XY, Hou LJ, Shao XQ, Shuang SM, Wang Y, Dong C. A phenolphthalein-based fluorescent probe for the sequential sensing of Al 3+ and F - ions in aqueous medium and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:131-139. [PMID: 30308397 DOI: 10.1016/j.saa.2018.09.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 05/12/2023]
Abstract
A novel fluorescent probe, phenolphthalein‑dialdehyde‑(2‑pyridyl) hydrazone (L), for sequentially detecting Al3+ and F- in almost 100% aqueous medium was successfully designed and synthesized. The probe offers two binding pockets for Al3+ to form a 1: 2 ligand/metal complex, leading to a significant fluorescence enhancement at 465 nm. Further, the in-situ formed L-Al complex acts as a secondary fluorescent chemosensor for F- by quenching the fluorescence of the complex with high selectivity. The detection limit for Al3+ and F- sensing is 2.28 nM and 0.13 μM, respectively, which are far below the World Health Organization (WHO) acceptable limits (7.41 μM for Al3+ ion and 79 μM for F-) in drinking water. The probe L was successfully applied to the detection of Al3+ and F- in cells using fluorescence microscopy.
Collapse
Affiliation(s)
- Xiang-Yu Kong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ling-Jie Hou
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xiu-Qing Shao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shao-Min Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
11
|
Design of a colorimetric and turn-on fluorescent probe for the detection of Al(III). J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|