1
|
Farokhvand N, Shareghi B, Farhadian S. Evidence for paraquat-pepsin interaction: In vitro and silico study. CHEMOSPHERE 2024; 349:140714. [PMID: 38006922 DOI: 10.1016/j.chemosphere.2023.140714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
The use of the herbicide paraquat (PQ) has raised concerns about potential environmental consequences due to its toxicity and persistence in the environment. Considering the affinity of dangerous compounds to biological molecules, it is necessary to know their binding properties. This article focuses on the behavior of the pepsin enzyme following its contact with paraquat poison, and the interaction between paraquat and pepsin has been investigated in laboratory conditions and simulated physiological conditions using multispectral techniques. Fluorescence experiments showed that PQ uses a static method to quench pepsin's intrinsic fluorescence. By causing structural damage to pepsin, PQ may be detrimental as it alters its conformational function based on FT-IR spectroscopy. The coupling reaction is a spontaneous process caused by hydrogen bonding and van der Waals forces according to the analysis of the thermodynamic parameters of each system at three different temperatures. The molecular structure of pepsin changes when it binds to PQ. Also, the results showed that PQ is a pepsin inhibitor that changes the function of the enzyme.
Collapse
Affiliation(s)
- Najimeh Farokhvand
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
2
|
Kumari N, Singh D, Singh P, Mishra A, Gond C, Ojha H, Tiwari AK. Biological Evaluation and Binding Mechanism of 5-HT 7 Specific Arylpiperazinyl-Alkyl Benzothiazolone: Radiobiology and Photo-physical Studies. J Fluoresc 2024; 34:341-352. [PMID: 37249676 DOI: 10.1007/s10895-023-03266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Diversely substituted methoxy derivatives of arylpiperazinyl-alkyl benzothiazolone has been evaluated as specific probe for 5HT7. To determine the best methoxy derivative for 5HT7 receptor affinity, we synthesised a number of 2-benzothiazolone arylalkyl piperazine derivatives. In-vitro/vivo studies with C-2 substituted [11C]ABT showed 5HT7 specific binding. The radiochemical purity of [11C]ABT was found to be more than 99% with radiochemical stability persistence for more than 1.5 hr at 25 °C. The interaction of BSA and ABT has been analysed by photophysical studies for better understanding of properties such as adsortion, distribution, metabolism and elemination (ADME). The interaction between ABT and BSA was analyzed by using the UV-vis and fluorescence spectra. UV-vis spectra analyzed the changes in primary structure of BSA on its interaction with ABT. ABT showed quenched fluorescence emission intensity of tryptophan residues in BSA via static quenching mechanism. This study might help to understand how ABT binds to serum protein or subsequently to know the ADME of this drug candidate.
Collapse
Affiliation(s)
- Neelam Kumari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
- CBRN Protection and decontamination research group, Division of Cyclotron and Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Timarpur, 110054, Delhi, India
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Benito JuarezMarg, New Delhi, 110021, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Akanksha Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Chandraprakash Gond
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Himanshu Ojha
- CBRN Protection and decontamination research group, Division of Cyclotron and Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Timarpur, 110054, Delhi, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India.
| |
Collapse
|
3
|
Habibi A, Farhadian S, Shareghi B, Hashemi-Shahraki F. Structural change study of pepsin in the presence of spermidine trihydrochloride: Insights from spectroscopic to molecular dynamics methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122264. [PMID: 36652806 DOI: 10.1016/j.saa.2022.122264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Spermidine is an aliphatic polyamine that directs a set of biological processes. This work aimed to use UV-Vis spectroscopy, fluorescence spectroscopy, thermal stability, kinetic methods, docking, and molecular dynamic simulations to examine the influence of spermidine trihydrochloride (SP) on the structure and function of pepsin. The results of the fluorescence emission spectra indicated that spermidine could quench pepsin's intrinsic emission in a static quenching process, resulting in the formation of the pepsin-spermidine complex. The results discovered that spermidine had a strong affinity to the pepsin structure because of its high binding constant. The obtained results from spectroscopy and molecular dynamic approaches showed the binding interaction between spermidine and pepsin, induced micro-environmental modifications around tryptophan residues that caused a change in the tertiary and secondary structure of the enzyme. FTIR analysis showed hypochromic effects in the spectra of amide I and II and redistribution of the helical structure. Moreover, the molecular dynamic (MD) and docking studies confirmed the experimental data. Both experimental and molecular dynamics simulation results clarified that electrostatic bond interactions were dominant forces.
Collapse
Affiliation(s)
- Atefeh Habibi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
4
|
Osman MM, El-Shaheny R, Ibrahim FA. Perception of the interaction behavior between pepsin and the antimicrobial drug secnidazole with combined experimental spectroscopy and computer-aided techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122336. [PMID: 36680834 DOI: 10.1016/j.saa.2023.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Drug-pepsin interaction possibly affects pepsin activity, leads to undesirable shift of its functionality, and likely induces adverse effects in the gastrointestinal tract. The present study aims at exploring the interaction of pepsin with the antiprotozoal/antibacterial drug secnidazole adopting a combination of experimental spectroscopy and computational techniques. For this purpose, different spectroscopic methods including fluorescence, synchronous fluorescence, UV-Visible absorption, and infrared spectroscopy were adopted and coordinated with in silico analysis via molecular docking. The employed synchronized approaches evidenced that; pepsin interacted with secnidazole via static mechanism at stomach pH inferring some consequent conformational changes in the structure of pepsin. Thermodynamic study of drug-pepsin interaction demonstrated that the interaction is spontaneous via van der Waals and hydrogen bonding interaction and the orientation of ligand within pepsin cavity was illustrated by molecular docking. The synchronous fluorescence study proved that tyrosine amino acid residues were involved in the interaction more than tryptophan amino acid residues. Eventually, the combined experimental and molecular docking approaches suggest that secnidazole interacts with pepsin and alter its structure, that finding correlates to gastrointestinal side effects related to secnidazole oral administration.
Collapse
Affiliation(s)
- Mohamed M Osman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Fawzia A Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Spectroscopic studies on binding of ibuprofen and drotaverine with bovine serum albumin. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Eslami-Farsani R, Farhadian S, Shareghi B, Momeni L. molecular interaction of ethylene glycol to hurt Myoglobin: Insights from spectroscopic and molecular modeling studies. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Quds R, Amiruddin Hashmi M, Iqbal Z, Mahmood R. Interaction of mancozeb with human hemoglobin: Spectroscopic, molecular docking and molecular dynamic simulation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121503. [PMID: 35717929 DOI: 10.1016/j.saa.2022.121503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Mancozeb is a broad-spectrum fungicide used extensively in agriculture to protect plants from numerous diseases. Hemolysis of human erythrocytes on exposure to mancozeb has been reported. In the present study, we investigated the interaction of mancozeb with human hemoglobin (Hb) using multi-spectroscopic techniques, molecular docking and molecular dynamic simulation. UV-visible spectroscopy studies suggested intimate binding of mancozeb to Hb. Mancozeb quenched the intrinsic fluorescence of Hb and Stern-Volmer plots revealed that the quenching mechanism was of static type. Evaluation of thermodynamic parameters indicated that the binding of Hb to mancozeb was spontaneous, with van der Waals forces and hydrogen bonding being the key contributors in the binding reaction. Synchronous fluorescence experiments demonstrated that mancozeb altered the microenvironment around tryptophan residues, whereas polarity around tyrosine residues was not changed. Circular dichroism studies showed a decrease in the α helical content of Hb upon interaction with mancozeb. The inhibition of esterase activity showed that mancozeb can impair the enzymatic functions of Hb. Molecular docking study revealed that strong binding affinity existed between mancozeb and Hb, with hydrophobic forces playing a crucial role in the interaction. Molecular dynamic simulation showed that mancozeb formed a stable complex with Hb resulting in slight unfolding of the protein. To sum up, the results of this study show that mancozeb binds strongly to Hb, induces conformational changes in Hb and adversely affects its function.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
8
|
Yue Y, Wang Y, Tu Q, Xu Y, Zhang Y, Tang Q, Liu J. A comprehensive insight into the effects of punicalagin on pepsin: Multispectroscopy and simulations methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Asemi-Esfahani Z, Shareghi B, Farhadian S, Momeni L. Food additive dye–lysozyme complexation: Determination of binding constants and binding sites by fluorescence spectroscopy and modeling methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Chen F, Zhou L, Zhou B, Zhang S, Ma X, Zhou H, Tuo X. Elucidation on the interaction between transferrin and ascorbic acid: A study based on spectroscopic analysis, molecular docking technology, and antioxidant evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Inhibition mechanism of baicalein against alcohol dehydrogenase in vitro via biological techniques, spectroscopy and computer simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liu D, Zhang J, Chen L, Zhu Y, Zhang Y. Study on the Binding of Methylphenanthrene Isomers with Different Methylated Positions to Human Serum Albumin Employing Spectroscopic Techniques Combined with Molecular Docking. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1852280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dan Liu
- State Key Laboratory of Marine Environmental Sciences of China (Xiamen University), College of Environment and Ecology, Xiamen University, Xiamen, P.R. China
| | - Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Fujian Province University, Tan Kah Kee College, Xiamen University, Zhangzhou, P.R. China
| | - Linfeng Chen
- State Key Laboratory of Marine Environmental Sciences of China (Xiamen University), College of Environment and Ecology, Xiamen University, Xiamen, P.R. China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Sciences of China (Xiamen University), College of Environment and Ecology, Xiamen University, Xiamen, P.R. China
| |
Collapse
|
13
|
Chen R, He RJ, Guo D, Zhang ZF, Zhang WG, Fan J. Interactions of diclazuril enantiomers with serum albumins: Multi-spectroscopic and molecular docking approaches. J Mol Recognit 2022; 35:e2948. [PMID: 35094438 DOI: 10.1002/jmr.2948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
In this work, multi-spectroscopic and molecular docking methods have been conducted in the investigation of enantioselective interactions between diclazuril enantiomers and human/bovine serum albumins (HSA/BSA). The binding constants between serum albumins (SAs) and diclazuril enantiomers revealed that SAs exhibited stronger binding affinity for (R)-diclazuril than (S)-enantiomer. In addition, the fluorescence quenching of SAs induced by diclazuril enantiomers was ascribed to static quenching mechanism, in which hydrogen bonds and Van der Waals forces were the main interactions. According to the thermodynamic study, binding of diclazuril enantiomers and SAs was an exothermic process driven by enthalpy change. Then, circular dichroism spectroscopy of SAs with diclazuril enantiomers revealed that the SAs conformation had changed in the presence of diclazuril. Moreover, molecular docking technology was applied in exploration of interactions between SAs and diclazuril enantiomers. The docking energy between SAs and (R)-diclazuril was larger than (S)-diclazuril, which indicated that the affinity of SAs with (R)-diclazuril was stronger than (S)-enantiomer. This work may provide valuable information for explaining differences in pharmacokinetics and residue elimination of diclazuril enantiomers in living organisms.
Collapse
Affiliation(s)
- Ran Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Ru-Jian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China.,Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou, China
| | - Zhi-Feng Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Wei-Guang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| |
Collapse
|
14
|
Huang ZY, Li XY, Wang ZH, Hu LY, Tu XC, Hu YJ. Synthesis of novel 3-fluorooxindoles and their affinity probing with serum albumin: Using multi-spectral, electrochemical, and molecular docking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Parveen S, Ali MS, Al-Lohedan HA, Tabassum S. Interaction of Carrier Protein with Potential Metallic Drug Candidate N-Glycoside 'GATPT': Validation by Multi-Spectroscopic and Molecular Docking Approaches. Molecules 2021; 26:6641. [PMID: 34771048 PMCID: PMC8587009 DOI: 10.3390/molecules26216641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Lysozyme is often used as a model protein to study interaction with drug molecules and to understand biological processes which help in illuminating the therapeutic effectiveness of the drug. In the present work, in vitro interaction studies of 1-{(2-hydroxyethyl)amino}-2-amino-1,2-dideoxy-d-glucose triphenyl tin (IV) (GATPT) complex with lysozyme were carried out by employing various biophysical methods such as absorption, fluorescence, and circular dichroism (CD) spectroscopies. The experimental results revealed efficient binding affinity of GATPT with lysozyme with intrinsic binding (Kb) and binding constant (K) values in the order of 105 M-1. The number of binding sites and thermodynamic parameters ΔG, ΔH, and ΔS at four different temperatures were also calculated and the interaction of GATPT with lysozyme was found to be enthalpy and entropy driven. The CD spectra revealed alterations in the population of α-helical content within the secondary structure of lysozyme in presence of GATPT complex. The morphological analysis of the complex with lysozyme and lysozyme-DNA condensates was carried out by employing confocal and SEM studies. Furthermore, the molecular docking studies confirmed the interaction of GATPT within the larger hydrophobic pocket of the lysozyme via several non-covalent interactions.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohd. Sajid Ali
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (H.A.A.-L.)
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (H.A.A.-L.)
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
16
|
Evaluation of interactions between food colorant, tartrazine, and Apo-transferrin using spectroscopic analysis and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Lv X, Jiang Z, Zeng G, Zhao S, Li N, Chen F, Huang X, Yao J, Tuo X. Comprehensive insights into the interactions of dicyclohexyl phthalate and its metabolite to human serum albumin. Food Chem Toxicol 2021; 155:112407. [PMID: 34273427 DOI: 10.1016/j.fct.2021.112407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023]
Abstract
Phthalate esters (PAEs) are a type of persistent organic pollutants and have received widespread concerns due to their adverse effects on human health. Dicyclohexyl phthalate (DCHP) and its metabolite monocyclohexyl phthalate (MCHP) were selected to explore the mechanism for interaction of PAEs with human serum albumin (HSA) through molecular docking and several spectroscopic techniques. The results showed that DCHP/MCHP can spontaneously occupy site I to form a binary complex with HSA, and DCHP exhibited higher binding affinity to HSA than MCHP. At 298 K, the binding constants (Kb) of DCHP and MCHP to HSA were 24.82 × 104 and 1.04 × 104 M-1, respectively. Hydrogen bonds and van der Waals forces were the major driving forces in DCHP/MCHP-HSA complex. The presence of DCHP/MCHP induced the secondary structure changes in HSA, and the pi electrons of the benzene ring skeleton of DCHP/MCHP played a key role in this binding processes. Exposure of DCHP/MCHP to TM4 cells revealed that interactions between PAEs and serum albumin can affect their cytotoxicity; DCHP showed higher toxicity than MCHP. The binding affinity of PAEs with HSA may be a valuable parameter for rapid assessment of their toxicity to organisms.
Collapse
Affiliation(s)
- Xiaolan Lv
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zheng Jiang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na Li
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaojian Huang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jia Yao
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
18
|
Sheini A, Taherpour AA, Farajmand-Amirabadi S, Karampour F, Maghsudi M, Rahbar N. Recovered fluorescence of the Cd-nanocluster-Hg(II) system based on experimental results and computational methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119701. [PMID: 33794422 DOI: 10.1016/j.saa.2021.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Human Serum Albumin, a plasma protein existing in abundance, was selected as a template and reducing agent for the formation of CdNCs due to two factors: its stability and low cost. In the presence of human serum albumin (HSA), a selective and sensitive, low-cost, environmental friendly, and label-free off-on fluorescent sensor was synthesized and characterized for a bioaccumulating and toxic heavy metal, Hg2+ and biothiols. HSA - CdNCs can specifically recognize Hg2+ through aggregating NCs and causing fluorescence quenching. Subsequently, with increase in the concentration of biothiols, Hg2+ was eliminated from the surface of NC, while the fluorescence was restored. The calculated limits of detection (LOD) were 55 pM for Hg(II) and 14 nM for GSH, respectively. The assay was capable of detecting Hg2+ ions and GHS at different concentrations in the range of 0.008 to 8530 nM and 7.5-5157 nM, respectively. Furthermore, the appropriate molecular mechanics (MM) as well as quantum mechanical (QM) methods were performed to optimize and the theoretical investigation of the discussed HSA-profile structures and its interactions with the Cd-NCs (one atom of Cd), Hg2+ and glutathione (G).
Collapse
Affiliation(s)
- Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh University of Technology, Susangerd 78986, Iran.
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Fatemeh Karampour
- Department of Chemistry Engineering, Faculty of Shariati, Tehran Branch, Technical and Vocational University (TVU), Kermanshah, Iran
| | - Maryam Maghsudi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
|
20
|
Chu S, He F, Yu H, Liu G, Wan J, Jing M, Li Y, Cui Z, Liu R. Evaluation of the binding of UFCB and Pb-UFCB to pepsin: Spectroscopic analysis and enzyme activity assay. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Raeessi-babaheydari E, Farhadian S, Shareghi B. The interaction of the green tea polyphenol (catechin) with pepsin: Insights from spectroscopic to molecular dynamics studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115196] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Taneva SG, Krumova S, Bogár F, Kincses A, Stoichev S, Todinova S, Danailova A, Horváth J, Násztor Z, Kelemen L, Dér A. Insights into graphene oxide interaction with human serum albumin in isolated state and in blood plasma. Int J Biol Macromol 2021; 175:19-29. [PMID: 33508363 DOI: 10.1016/j.ijbiomac.2021.01.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
The interactions of graphene oxide (GO), a 2-dimensional nanomaterial with hydrophilic edges, hydrophobic basal plane and large flat surfaces, with biological macromolecules, are of key importance for the development of novel nanomaterials for biomedical applications. To gain more insight into the interaction of GO flakes with human serum albumin (HSA), we examined GO binding to HSA in its isolated state and in blood plasma. Calorimetric data reveal that GO strongly stabilizes free isolated HSA against a thermal challenge at low ionic strength, indicating strong binding interactions, confirmed by the drop in ζ-potential of the HSA/GO assemblies compared to bare GO flakes. However, calorimetry also revealed that the HSA-GO molecular interaction is hampered in blood plasma, the ionic strength being particularly important for the interactions. Molecular modelling calculations are in full concert with these experimental findings, indicating a considerably higher binding affinity for HSA to GO in its partially unfolded state, characteristic to low-ionic-strength environment, than for the native protein conformation, observed under physiological conditions. Therefore, for the first time we demonstrate an impeded interaction between HSA and GO nanoflakes in blood plasma, and suggest that the protein is protected from the plausible toxic effects of GO under native conditions.
Collapse
Affiliation(s)
- Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria.
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Avgustina Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - János Horváth
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; Doctoral School of Physics, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Násztor
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
23
|
Raza M, Jiang Y, Ahmad B, Rahman AU, Raza S, Khan A, Tahir K, Hassan S, Khan S, Yuan Q. Biophysical investigation of interactions between sorbic acid and human serum albumin through spectroscopic and computational approaches. NEW J CHEM 2021. [DOI: 10.1039/d0nj06276f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work provides an effective strategy to analyze the SA-induced microenvironmental changes in the HSA macromolecule, and also highlights the medicinal importance of SA.
Collapse
Affiliation(s)
- Muslim Raza
- Institute of Synthetic Biology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
- China
| | - Yang Jiang
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Bashir Ahmad
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Ata ur Rahman
- Institute of chemical sciences
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Saleem Raza
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre
- University of Nizwa
- Nizwa 616
- Sultanate of Oman
| | - Kamran Tahir
- Institute of Chemical Sciences
- Gomal University
- D. I. Khan
- Pakistan
| | - Said Hassan
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Saifullah Khan
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| |
Collapse
|
24
|
Elsonbaty A, Hasan MA, Eissa MS, Hassan WS, Abdulwahab S. Synchronous Spectrofluorimetry Coupled with Third-Order Derivative Signal Processing for the Simultaneous Quantitation of Telmisartan and Chlorthalidone Drug Combination in Human Plasma. J Fluoresc 2021; 31:97-106. [PMID: 33089428 DOI: 10.1007/s10895-020-02639-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
This study is the first to develop and optimize a method for the simultaneous determination of chlorthalidone (CLT) and telmisartan (TEL) in, human plasma samples as well as in their newly released pharmaceutical tablet form, (Telmikind-CT 40®). The method is based on measuring fluorescence intensity, employing synchronous fluorescence mode coupled to third-order derivative signal processing, 0.5% w/v cetyl trimethyl ammonium bromide was used as cationic surfactant to enhance the fluorescence signal intensity and improve method sensitivity. The third-order derivative synchronous spectra of CLT and TEL are well separated with two zero-crossing points which allowed for the determination of CLT and TEL at 362 nm and 351 nm, respectively. Different experimental parameters were carefully investigated and optimized, calibration curves were constructed over concentration ranges of 20-1200 ng.mL-1 and 5-800 ng.mL-1 for CLT and TEL respectively. The developed method is simple and rapid, analytical parameters were validated according to ICH guidelines and high sensitivity was achieved as represented by limits of detection (LOD) of 4.69 and 1.58 ng.mL-1 for CLT and TEL respectively.
Collapse
Affiliation(s)
- Ahmed Elsonbaty
- Department of Analytical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed A Hasan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Maya S Eissa
- Department of Analytical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Wafaa S Hassan
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C.44519, Egypt
| | - Sara Abdulwahab
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C.44519, Egypt.
| |
Collapse
|
25
|
Moradi S, Gholami H, Karami C, Farhadian N, Balaei F, Ansari M, Shahlaei M. A study on the protease activity and structure of pepsin in the presence of atenolol and diltiazem. Int J Biol Macromol 2020; 165:2855-2868. [PMID: 33096169 DOI: 10.1016/j.ijbiomac.2020.10.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022]
Abstract
Pepsin, as the main protease of the stomach, plays an important role in the digestion of food proteins into smaller peptides and performs about 20% of the digestive function. The role of pepsin in the development of gastrointestinal ulcers has also been studied for many years. Edible drugs that enter the body through the gastrointestinal tract will interact with this enzyme as one of the first targets. Continuous and long-term usage of some drugs will cause chronic contact of the drug with this protein, and as a result, the structure and function of pepsin may be affected. Therefore, the possible effect of atenolol and diltiazem on the structure and activity of pepsin was studied. The interaction of drugs with pepsin was evaluated using various experimental methods including UV-Visible spectroscopy, fluorescence spectroscopy, FTIR and enzymatic activity along with computational approaches. It was showed that after binding of atenolol and diltiazem to pepsin, the inherent fluorescence of the protein is quenched. Determination of the thermodynamic parameters of interactions between atenolol and diltiazem with pepsin indicates that the major forces in the formation of the protein-drug complexes are hydrophobic forces and also atenolol has a stronger protein bonding than diltiazem. Additional tests also show that the protease activity of pepsin, decreases and increases in the presence of atenolol and diltiazem, respectively. Investigation of the FTIR spectrum of the protein in the presence and absence of atenolol and diltiazem show that in the presence of atenolol the structure of protein has slightly changed. Molecular modeling studies, in agreement with the experimental results, confirm the binding of atenolol and diltiazem to the enzyme pepsin and show that the drugs are bind close to the active site of the enzyme. Finally, from experimental and computational results, it can be concluded that atenolol and diltiazem interact with the pepsin and change its structure and protease activity.
Collapse
Affiliation(s)
- Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Gholami
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Changiz Karami
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Balaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohabbat Ansari
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Huang S, Li H, Luo H, Yang L, Zhou Z, Xiao Q, Liu Y. Conformational structure variation of human serum albumin after binding interaction with black phosphorus quantum dots. Int J Biol Macromol 2020; 146:405-414. [DOI: 10.1016/j.ijbiomac.2020.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/02/2023]
|
27
|
Shaghaghi M, Dehghan G, Rashtbari S, Sheibani N, Aghamohammadi A. Multispectral and computational probing of the interactions between sitagliptin and serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117286. [PMID: 31302563 DOI: 10.1016/j.saa.2019.117286] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
The binding of sitagliptin (SIT), an anti-diabetic drug, to human and bovine serum albumin (HSA and BSA; main serum transport proteins) was investigated using various spectroscopic and molecular docking techniques. The fluorescence data demonstrated that SIT quenched inherent fluorescence of these proteins through the formation of SIT-HSA/BSA complexes. The number of binding sites was obtained (~1) and binding constant (Kb) and effective quenching constant (Ka) were calculated as 104 for both systems. Based on thermodynamic parameters, the van der Waals forces and hydrogen bonding were the most important forces in the interactions between HSA/BSA and SIT, and the complex formation processes were spontaneous. The results of UV-vis absorption and FT-IR spectroscopic revealed that SIT induces small conformational changes in the structure of the proteins (HSA/BSA). The synchronous fluorescence (SF) spectroscopy demonstrated that the binding of SIT with HSA/BSA had no effect on the polarity around Trp and Tyr residues. The CD spectra showed changes in the secondary and tertiary structures of both proteins with a decrease in α-helices contents and an increase in β-turn structures. The molecular docking and spectroscopic data verified the binding mechanisms between SIT and HSA/BSA, and revealed that SIT completely fits into the hydrophobic cavity between domain II and domain III of these proteins.
Collapse
Affiliation(s)
- Masoomeh Shaghaghi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Samaneh Rashtbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Azam Aghamohammadi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
28
|
Jalalvand AR, Ghobadi S, Goicoechea HC, Faramarzi E, Mahmoudi M. Matrix augmentation as an efficient method for resolving interaction of bromocriptine with human serum albumin: trouble shooting and simultaneous resolution. Heliyon 2019; 5:e02153. [PMID: 31388584 PMCID: PMC6667702 DOI: 10.1016/j.heliyon.2019.e02153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/12/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
This work reports the results of an interesting study related to the investigation of interactions of bromocriptine (BCP) with human serum albumin (HSA) by mathematicall modelling of voltammetric and spectroscopic data into an augmented data matrix and its resolution by multivariate curve resolution-alternating least squares (MCR-ALS). The quality of the results obtained by MCR-ALS was examined by MCR-BANDS and its outputs confirmed the absence of rotational ambiguities in the MCR-ALS results. BCP-HSA interactions were also modeled by molecular docking methods to verify the results obtained from experimental sections and fortunately, they were compatible. Hard modeling of the experimental data by EQUISPEC helped us to calculate the binding constant of the complex formed from BCP-HSA interactions which was in a good agreement with that of calculated from direct analysis of the experimental data. Finally, with the help of two different amperometric measurements based on BCP-HSA interactions a novel electroanalytical method was developed for biosensing of HSA in serum samples.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC242, S3000ZAA, Santa Fe, Argentina
| | - Elahe Faramarzi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Probing the binding effects of zinc and cadmium with garlic phytocystatin: Implication of the abiotic stress on garlic phytocystatin. Int J Biol Macromol 2019; 133:945-956. [DOI: 10.1016/j.ijbiomac.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/10/2019] [Accepted: 04/05/2019] [Indexed: 11/24/2022]
|
30
|
Lian S, Lian J, Wang G, Li L, Yang D, Xue Y. Investigation of binding between fluoroquinolones and pepsin by fluorescence spectroscopy and molecular simulation. LUMINESCENCE 2019; 34:595-601. [DOI: 10.1002/bio.3642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Shu‐Qin Lian
- School of PharmacyXuzhou Medical University Xuzhou Jiangsu China
| | - Jie Lian
- College of Marine Life and FisheriesHuaihai Institute of Technology Lian Yungang Jiangsu China
| | - Gui‐Rong Wang
- School of PharmacyXuzhou Medical University Xuzhou Jiangsu China
| | - Lin Li
- School of Basic EducationXuzhou Medical University Xuzhou Jiangsu China
| | - Dong‐Zhi Yang
- School of PharmacyXuzhou Medical University Xuzhou Jiangsu China
| | - Yun‐sheng Xue
- School of PharmacyXuzhou Medical University Xuzhou Jiangsu China
| |
Collapse
|
31
|
Novel BTK inhibitor acalabrutinib (ACP-196) tightly binds to site I of the human serum albumin as observed by spectroscopic and computational studies. Int J Biol Macromol 2019; 127:536-543. [DOI: 10.1016/j.ijbiomac.2019.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
|
32
|
Lin J, Xu Y, Wang Y, Huang S, Li J, Meti MD, Xu X, Hu Z, Liu J, He Z, Xu H. Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling. J Biomol Struct Dyn 2018; 37:4070-4079. [DOI: 10.1080/07391102.2018.1539411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jialiang Lin
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Yang Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
| | - Yuhan Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Songyang Huang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Junwei Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Manjunath D. Meti
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Xu Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Johnson Liu
- School Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Zhendan He
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of RF Circuits and Systems of Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|