1
|
Zanetti C, Li L, Gaspar RDL, Santovito E, Elisseeva S, Collins SG, Maguire AR, Papkovsky DB. Susceptibility of the Different Oxygen-Sensing Probes to Interferences in Respirometric Bacterial Assays with Complex Media. SENSORS (BASEL, SWITZERLAND) 2024; 24:267. [PMID: 38203132 PMCID: PMC10781214 DOI: 10.3390/s24010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Respirometric microbial assays are gaining popularity, but their uptake is limited by the availability of optimal O2 sensing materials and the challenge of validating assays with complex real samples. We conducted a comparative evaluation of four different O2-sensing probes based on Pt-porphyrin phosphors in respirometric bacterial assays performed on standard time-resolved fluorescence reader. The macromolecular MitoXpress, nanoparticle NanO2 and small molecule PtGlc4 and PtPEG4 probes were assessed with E. coli cells in five growth media: nutrient broth (NB), McConkey (MC), Rapid Coliform ChromoSelect (RCC), M-Lauryl lauryl sulfate (MLS), and Minerals-Modified Glutamate (MMG) media. Respiration profiles of the cells were recorded and analyzed, along with densitometry profiles and quenching studies of individual media components. This revealed several limiting factors and interferences impacting assay performance, which include probe quenched lifetime, instrument temporal resolution, inner filter effects (mainly by indicator dyes), probe binding to lipophilic components, and dynamic and static quenching by media components. The study allowed for the ranking of the probes based on their ruggedness, resilience to interferences and overall performance in respirometric bacterial assays. The 'shielded' probe NanO2 outperformed the established MitoXpress probe and the small molecule probes PtGlc4 and PtPEG4.
Collapse
Affiliation(s)
- Chiara Zanetti
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| | - Liang Li
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| | | | - Elisa Santovito
- National Research Council of Italy, Institute of Sciences of Food Production, Via Amendola 122/O, 70126 Bari, Italy;
| | - Sophia Elisseeva
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| | - Stuart G. Collins
- School of Chemistry, University College Cork, Pharmacy Building, College Road, T12 YN60 Cork, Ireland; (S.G.C.); (A.R.M.)
| | - Anita R. Maguire
- School of Chemistry, University College Cork, Pharmacy Building, College Road, T12 YN60 Cork, Ireland; (S.G.C.); (A.R.M.)
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 K8AF Cork, Ireland; (C.Z.); (L.L.)
| |
Collapse
|
2
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
3
|
Zou H, Zhang Y, Zhang C, Sheng R, Zhang X, Qi Y. Fluorometric Detection of Thiamine Based on Hemoglobin-Cu 3(PO 4) 2 Nanoflowers (NFs) with Peroxidase Mimetic Activity. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6359. [PMID: 33171820 PMCID: PMC7664642 DOI: 10.3390/s20216359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Component analysis plays an important role in food production, pharmaceutics and agriculture. Nanozymes have attracted wide attention in analytical applications for their enzyme-like properties. In this work, a fluorometric method is described for the determination of thiamine (TH) (vitamin B1) based on hemoglobin-Cu3(PO4)2 nanoflowers (Hb-Cu3(PO4)2 NFs) with peroxidase-like properties. The Hb-Cu3(PO4)2 NFs catalyzed the decomposition of H2O2 into ·OH radicals in an alkaline solution that could efficiently react with nonfluorescent thiamine to fluoresce thiochrome. The fluorescence of thiochrome was further enhanced with a nonionic surfactant, Tween 80. Under optimal reaction conditions, the linear range for thiamine was from 5 × 10-8 to 5 × 10-5 mol/L. The correlation coefficient for the calibration curve and the limit of detection (LOD) were 0.9972 and 4.8 × 10-8 mol/L, respectively. The other vitamins did not bring about any obvious changes in fluorescence. The developed method based on hybrid nanoflowers is specific, pragmatically simple and sensitive, and has potential for application in thiamine detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanfei Qi
- School of Public Health, Jilin University, Changchun 130021, Jilin, China; (H.Z.); (Y.Z.); (C.Z.); (R.S.); (X.Z.)
| |
Collapse
|