1
|
Lyu JS, Han J. Fabrication of bio-inspired carbon nanodot-corn starch nanocomposite films via extrusion process for sustainable active food packaging applications. Carbohydr Polym 2024; 343:122502. [PMID: 39174146 DOI: 10.1016/j.carbpol.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
In this study, carbon nanodot (CD)-corn starch (CS) nanocomposite films are fabricated for active food packaging applications. First, ginkgo biloba leaves (GBL) were used as a biomass-derived carbon precursor, and a facile hydrothermal method was employed to synthesise environmentally sustainable CDs. The GBL-derived carbon nanodots (gCDs) were then characterised and incorporated into a CS matrix via an extrusion process to fabricate the CS/gCD nanocomposite film. The effects of various gCD concentrations on the physicochemical and functional properties of CS/gCD composite films were systematically investigated. The gCD exhibited non-cytotoxic effect against human colorectal adenocarcinoma cell line (Caco-2) cells when exposed up to 1000 μg/mL. The incorporation of gCDs into the CS film improved its mechanical properties, with the toughness of the CS/gCD2% nanocomposite film exhibiting 198 % superiority compared to the CS film. In addition, the oxygen barrier and UV-blocking properties were significantly improved. Furthermore, the CS/gCD nanocomposite film significantly extended the shelf life of ω-3 oils owing to the superior antioxidant activity of the gCDs, exhibiting only 9 meq/kg during the 15-day storage period. Our results suggest that the developed CS/gCD active composite film is a promising candidate for environmentally sustainable solutions to enhance food shelf life and reduce food waste.
Collapse
Affiliation(s)
- Ji Sou Lyu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Qin S, Gao Y, Zhao M, Wang Y, Zhai M, Chen M, Xu X, Hu C, Lei J, Chu H, Gao L, Jin F. Acriflavine-modified UIO-66 ratiometric fluorescent sensor for highly selective and fast detection of hypochlorite in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125333. [PMID: 39492089 DOI: 10.1016/j.saa.2024.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Hypochlorite (ClO-) as a kind of highly toxic pollutant has garnered significant interest in detection methods, highlighting the pressing need to develop intelligent functional materials for the qualitative and quantitative analysis of ClO- in aqueous solutions. Herein, a ratiometric fluorescent sensor was prepared by the combination of acriflavine (Acr) and UIO-66 via a post-synthetic modification strategy. Acr/UIO-66 exhibited both high crystallinity typical of metal-organic frameworks and demonstrated good fluorescent and thermal stability. Additionally, Acr/UIO-66 functioned effectively as a dual-responsive fluorescent platform for detecting ClO- in domestic drinking and surface water samples. This material displayed high sensitivity, exceptional selectivity, and superior anti-interference capabilities, along with fast respond time (60 s), a wide pH range (4.0-7.0), high recoveries (94.46-118.00 %), a broad linear range (0-28 µmol L-1) and low detection limits (0.74 µmol L-1). This study broadened the potential applications of fluorescent metal-organic frameworks and presented a feasible solution for water quality monitoring.
Collapse
Affiliation(s)
- Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Yu Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Minghui Zhai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Mo Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xidi Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Chunqi Hu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Jinxin Lei
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China.
| | - Fenglong Jin
- Qiqihar Inspection and Testing Center, Qiqihar Administration for Market Regulation, Qiqihar 161000, PR China.
| |
Collapse
|
3
|
Mottola S, Viscusi G, Tohamy HAS, El-Sakhawy M, Gorrasi G, De Marco I. Application of electrospun N-doped carbon dots loaded cellulose acetate membranes as cationic dyes adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122714. [PMID: 39383756 DOI: 10.1016/j.jenvman.2024.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
This work aims to apply carbon quantum dots (CQDs) from agriculture cellulosic waste (agro wastes), produced via an economically and eco-friendly single-step method, to be used into cellulose acetate composite microfibrous membranes as an innovative solution specifically designed to adsorb methylene blue (MB) and other cationic dyes that are present in various water effluents. Batch adsorption tests were conducted, with variations in contact time (1-24 h), initial MB concentration (25-300 ppm), and adsorbent doses (1-20 g/L). The maximum adsorption capacity of the membrane was 198 mg/g with an initial concentration of 300 ppm at 298 K. Thermodynamic parameters showed that the process is endothermic. Equilibrium experimental data for MB adsorption onto electrospun adsorbent were fitted using different isothermal models, with the Freundlich model showing the best fit. The pseudo-second-order model accurately described the kinetic data with high reliability (R2 > 0.99), and the calculated adsorption capacity was very close to the experimental data. N-CQDs loaded membranes were also tested for removing methyl violet and rhodamine B, demonstrating remarkably high dye removal efficiency. The underlying adsorption mechanism was also reported. Finally, it is worth mentioning that composite adsorbents can be efficiently applied to actual industrial cases because of the possibility of reusing them, opening the route to the fabrication of novel and highly performant adsorbents. These findings underscore N-CQDs' effectiveness in enhancing pollutant removal efficiency from wastewater, highlighting their environmental benefits and promoting a more sustainable approach to water treatment. Therefore, the prepared adsorbent, showing excellent adsorption performance, places them among adsorbents for practical applications in wastewater purification.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Hebat-Allah S Tohamy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - Mohamed El-Sakhawy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
4
|
Osman MM, El-Shaheny R, Ibrahim FA. Alfalfa biomass as a green source for the synthesis of N,S-CDs via microwave treatment. Application as a nano sensor for nifuroxazide in formulations and gastric juice. Anal Chim Acta 2024; 1319:342946. [PMID: 39122268 DOI: 10.1016/j.aca.2024.342946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Researchers have investigated different techniques for synthesis of carbon dots. These techniques include Arc discharge, laser ablation, oxidation, water/solvothermal, and chemical vapor deposition. However, these techniques suffer from some limitations like the utilization of gaseous charged particles, high current, high temperature, potent oxidizing agents, non-environmentally friendly carbon sources, and the generation of uneven particle size. Therefore, there was a significant demand for the adoption of a new technology that combines the environmentally friendly aspects of both bio-based carbon sourcing and synthesis technique. RESULTS Medicago sativa L (alfalfa)-derived N, S-CDs have been successfully synthesized via microwave irradiation. The N,S-CDs exhibit strong fluorescence (λex/em of 320/420 nm) with fluorescence quantum yield of 2.2 % and high-water solubility. The produced N,S-CDs were characterized using TEM, EDX, Zeta potential analysis, IR, UV-Visible, and fluorescence spectroscopy. The average diameter of the produced N, S-CDs was 4.01 ± 1.2 nm, and the Zeta potential was -24.5 ± 6.63 mv. The stability of the produced nano sensors was also confirmed over wide pH range, long time, and in presence of different ions. The synthesized N, S-CDs were employed to quantify the antibacterial drug, nifuroxazide (NFZ), by fluorescence quenching via inner filter effect mechanism. The method was linear with NFZ concentration ranging from 1.0 to 30.0 μM. LOD and LOQ were 0.16 and 0.49 μM, respectively. The method was applied to quantify NFZ in simulated gastric juice (SGJ) with % recovery 99.59 ± 1.4 in addition to pharmaceutical dosage forms with % recovery 98.75 ± 0.61 for Antinal Capsules® and 100.63 ± 1.54 for Antinal suspension®. The Method validation was performed in compliance with the criteria outlined by ICH. SIGNIFICANCE AND NOVELTY The suggested approach primarily centers on the first-time use of alfalfa, an ecologically sustainable source of dopped-CDs, and a cost-effective synthesis technique via microwave irradiation, which is characterized by low energy consumption, minimized reaction time, and the ability to control the size of the produced CDs. This is in line with the growing global recognition of the implementation of green analytical chemistry principles.
Collapse
Affiliation(s)
- Mohamed M Osman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Fawzia A Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Bezrukov A, Galeeva A, Krupin A, Galyametdinov Y. Molecular Orientation Behavior of Lyotropic Liquid Crystal-Carbon Dot Hybrids in Microfluidic Confinement. Int J Mol Sci 2024; 25:5520. [PMID: 38791556 PMCID: PMC11122583 DOI: 10.3390/ijms25105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Lyotropic liquid crystals represent an important class of anisotropic colloid systems. Their integration with optically active nanoparticles can provide us with responsive luminescent media that offer new fundamental and applied solutions for biomedicine. This paper analyzes the molecular-level behavior of such composites represented by tetraethylene glycol monododecyl ether and nanoscale carbon dots in microfluidic channels. Microfluidic confinement allows for simultaneously applying multiple factors, such as flow dynamics, wall effects, and temperature, for the precise control of the molecular arrangement in such composites and their resulting optical properties. The microfluidic behavior of composites was characterized by a set of analytical and modeling tools such as polarized and fluorescent microscopy, dynamic light scattering, and fluorescent spectroscopy, as well as image processing in Matlab. The composites were shown to form tunable anisotropic intermolecular structures in microchannels with several levels of molecular ordering. A predominant lamellar structure of the composites was found to undergo additional ordering with respect to the microchannel axis and walls. Such an alignment was controlled by applying shear and temperature factors to the microfluidic environment. The revealed molecular behavior of the composite may contribute to the synthesis of hybrid organized media capable of polarized luminescence for on-chip diagnostics and biomimetics.
Collapse
Affiliation(s)
- Artem Bezrukov
- Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia; (A.G.); (A.K.); (Y.G.)
| | | | | | | |
Collapse
|
6
|
Louw CJ, de Haan P, Verpoorte E, Baker P. Efficient Electrochemiluminescence Sensing in Microfluidic Biosensors: A Review. Crit Rev Biomed Eng 2024; 52:41-62. [PMID: 38523440 DOI: 10.1615/critrevbiomedeng.2023049565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Microfluidic devices are capable of handling 10-9 L to 10-18 L of fluids by incorporating tiny channels with dimensions of ten to hundreds of micrometers, and they can be fabricated using a wide range of materials including glass, silicon, polymers, paper, and cloth for tailored sensing applications. Microfluidic biosensors integrated with detection methods such as electrochemiluminescence (ECL) can be used for the diagnosis and prognosis of diseases. Coupled with ECL, these tandem devices are capable of sensing biomarkers at nanomolar to picomolar concentrations, reproducibly. Measurement at this low level of concentration makes microfluidic electrochemiluminescence (MF-ECL) devices ideal for biomarker detection in the context of early warning systems for diseases such as myocardial infarction, cancer, and others. However, the technology relies on the nature and inherent characteristics of an efficient luminophore. The luminophore typically undergoes a redox process to generate excited species which emit energy in the form of light upon relaxation to lower energy states. Therefore, in biosensor design the efficiency of the luminophore is critical. This review is focused on the integration of microfluidic devices with biosensors and using electrochemiluminescence as a detection method. We highlight the dual role of carbon quantum dots as a luminophore and co-reactant in electrochemiluminescence analysis, drawing on their unique properties that include large specific surface area, easy functionalization, and unique luminescent properties.
Collapse
Affiliation(s)
- Clementine Juliat Louw
- SensorLab, Chemistry Department, University of the Western Cape, Cape Town, South Africa; Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Pim de Haan
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Priscilla Baker
- Department of Chemistry, University of the Western Cape Bellville, 7535, Republic of South Africa
| |
Collapse
|
7
|
Liu M, Bai Y, He Y, Zhou Y, Liu Z, Chen H, Liu X, Fu C. High-throughput detection of mycophenolic acid in human plasma based on sensitive and rapid fluorescence nitrogen-doped carbon dots sensing platform. J Pharm Biomed Anal 2023; 234:115545. [PMID: 37364453 DOI: 10.1016/j.jpba.2023.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
In this experiment, a water-soluble, nitrogen-doped yellow-green fluorescent N-doped carbon dots (N-CDs) were synthesized by one-step hydrothermal method using β-cyclodextrin as carbon source and L-phenylalanine as nitrogen source. The fluorescence quantum yield of the obtained N-CDs was as high as 9.96%, and the N-CDs exhibited photostability at different pH, ionic strength and temperature. The morphology of the N-CDs was approximately spherical with an average particle size of about 9.4 nm. Based on the fluorescence enhancement effect of mycophenolic acid (MPA) on N-CDs, a quantitative detection method of MPA was established. This method had good selectivity and high sensitivity for MPA. The fluorescence sensing system was applied to the detection of MPA in human plasma. The linear range of MPA were 0.06-3 μg·mL-1 and 3-27 μg·mL-1 with a detection limit of 0.016 μg·mL-1, and the recoveries were 97.03∼100.64 % with the RSDs of 0.13∼2.90 %. The interference experiment results showed that the interference of other coexisting substances, including Fe3+, can be ignored in the actual detection. Comparing the results measured by the established method with the EMIT method, it was found that the results obtained by the two methods were similar, and the relative error was within ± 5 %. This study provided a simple, rapid, sensitive, selective and effective method for the quantitative analysis of MPA, and was expected to be applied to clinical MPA blood concentration monitoring.
Collapse
Affiliation(s)
- Mei Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China; SCMPA Key Laboratory for Quality Research and Control of Chemical Medicine, Chengdu, PR China
| | - Yangjuan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yunan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Yanqu Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Zhonglin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Hong Chen
- SCMPA Key Laboratory for Quality Research and Control of Chemical Medicine, Chengdu, PR China
| | - Xiuxiu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Chunmei Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China.
| |
Collapse
|
8
|
Kumara BN, Kalimuthu P, Prasad KS. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review. Anal Chim Acta 2023; 1268:341430. [PMID: 37268342 DOI: 10.1016/j.aca.2023.341430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Photoluminescent-carbon nanoparticles (PL-CNPs) are a new class of materials that received immense interest among researchers due to their distinct characteristics, including photoluminescence, high surface-to-volume ratio, low cost, ease of synthesis, high quantum yield, and biocompatibility. By exploiting these outstanding properties, many studies have been reported on its utility as sensors, photocatalysts, probes for bio-imaging, and optoelectronics applications. From clinical applications to point-of-care test devices, drug loading to tracking of drug delivery, and other research innovations demonstrated PL-CNPs as an emerging material that could substitute conventional approaches. However, some of the PL-CNPs have poor PL properties and selectivity due to the presence of impurities (e.g., molecular fluorophores) and unfavourable surface charges by the passivation molecules, which impede their applications in many fields. To address these issues, many researchers have been paying great attention to developing new PL-CNPs with different composite combinations to achieve high PL properties and selectivity. Herein, we thoroughly discussed the recent development of various synthetic strategies employed to prepare PL-CNPs, doping effects, photostability, biocompatibility, and applications in sensing, bioimaging, and drug delivery fields. Moreover, the review discussed the limitations, future direction, and perspectives of PL-CNPs in possible potential applications.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| | - K S Prasad
- Centre for Nutrition Studies, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
9
|
Qin S, You X, Guo X, Chu H, Dong Q, Cui H, Jin F, Gao L. A chiral fluorescent COF prepared by post-synthesis modification for optosensing of imazamox enantiomers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122370. [PMID: 36680831 DOI: 10.1016/j.saa.2023.122370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
We report a post-synthesis modification for the preparation of a novel chiral fluorescent covalent organic framework (COF) for selective recognization of imazamox enantiomers. In this study, chiral COF was firstly synthesized via a Schiff-base reaction between 2,5-dihydroxyterephthalaldehyde (Dha) and 1,3,5-tris(4-aminophenyl)benzene (Tab) followed by a nucleophilic substitution using (1S)-(+)-10-camphorsulfonyl chloride as chiral modifier. The resulting regular spherical chiral COF Dha Tab not only presented the high optical efficiency, strong covalent bond structure, good crystallinity, large specific surface area but also showed the specific enantioselectivity and quick identification for imazamox enantiomers among five pesticide enantiomers (S/R-imazamox, acephate, acetochlor, propisochlor and metalaxyl). The detection limits for S- and R-imazamox were 4.20 μmol/L and 3.03 μmol/L, respectively. Meanwhile, the enantiomeric excess value (5.30 %) manifested that the chiral COF Dha Tab had the strong adsorption ability to imazamox enantiomers and more higher affinity for R-imazamox. This chiral fluorescent COF opened up a new way for the recognition of enantiomers.
Collapse
Affiliation(s)
- Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xingyu You
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xinyu Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Qing Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Hongshou Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Fenglong Jin
- Qiqihar Inspection and Testing Center, Qiqihar Administration for Market Regulation, China.
| | - Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| |
Collapse
|
10
|
Devi N, Wangoo N. Tuning the Luminescence of Microwave-Assisted N-Doped Fluorescent Carbon Dots: Bioimaging Applications and Label-Free Anti-Cancer Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:999-1010. [PMID: 36872820 DOI: 10.1021/acsabm.2c00850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Nanosized fluorescent carbon dots (Cdots) have gained a lot of attention in the recent years because of their superior properties, such as good biocompatibility, low toxicity, excellent chemical stability, resistance to photobleaching, and ease of chemical modification. Cdots are promising candidates for considerable applications in various fields: sensors, bioimaging, and drug delivery. Specifically, nitrogen-doped Cdots have attracted a huge interest because of their applicability in bioimaging and drug delivery. Conventional methods for the synthesis of Cdots have drawbacks, such as the use of organic solvents, the presence of side products, and the time required for synthesis. Keeping all these points in mind, herein, we report green methodology for the synthesis of water-soluble, blue-emitting, nitrogen-doped multifunctional Cdots under microwave irradiation within 3 min. The Cdots were prepared using citric acid and arginine as source materials and were characterized using various physicochemical techniques. A pH-responsive drug delivery system was then designed using anticancer drug doxorubicin and the synthesized Cdots. The biocompatibility of synthesized Cdots was analyzed against L929 normal cell line. The Cdots-DOX conjugates exhibited efficient anticancer activity against HeLa cells and also acted as excellent bioimaging agents.
Collapse
Affiliation(s)
- Neha Devi
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh-160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh-160014, India
| |
Collapse
|
11
|
Zhou Y, Liu M, Liu X, Jiang R, He Y, Yao Q, Chen H, Fu C. Rapid and sensitifve fluorescence determination of oxytocin using nitrogen-doped carbon dots as fluorophores. J Pharm Biomed Anal 2023; 229:115344. [PMID: 36966622 DOI: 10.1016/j.jpba.2023.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
In this work, a novel nitrogen (N)-doped carbon dots (N-CDs) was prepared with quercetin as the carbon source and o-phenylenediamine as the nitrogen source by hydrothermal synthesis, and their application as fluorophores for selective and sensitive determination of oxytocin were reported. The fluorescence quantum yield of the as-prepared N-CDs, which exhibited good water solubility and photostability, was about 6.45 % using rhodamine 6 G as reference substance, and the maximum excitation (Ex) and emission (Em) wavelength were 460 nm and 542 nm, respectively. The results illustrated that the direct fluorescence quenching of N-CDs fluorophore for the detection of oxytocin achieved good linearity in the range of 0.2-5.0 IU/mL and 5.0-10.0 IU/mL, the correlation coefficients were 0.9954 and 0.9909, respectively, and the detection limit was 0.0196 IU/mL (S/N = 3). The recovery rates were 98.8∼103.8 % with RSD= 0.93 %. The interference experiments showed that common metal ions, possible impurities introduced in production and coexisting excipients in the preparation had little adverse influence on selective detection of oxytocin by the developed N-CDs based fluorescent detection method. The mechanism study on the fluorescence quenching of N-CDs by oxytocin concentrations under the given experimental conditions demonstrated that there were internal filtration effect and static quenching in the system. The developed fluorescence analysis platform for the detection of oxytocin had been proved to be rapid, sensitive, specific and accurate, and to be used for the quality inspection of oxytocin.
Collapse
|
12
|
Sakunrungrit K, Suwanchawalit C, Charoenkitamorn K, Hongwitayakorn A, Strzelak K, Chaneam S. Sequential Injection Analysis for Rapid Determination of Mercury in Skincare Products Based on Fluorescence Quenching of Eco-Friendly Synthesized Carbon Dots. ACS OMEGA 2023; 8:7615-7625. [PMID: 36872964 PMCID: PMC9979229 DOI: 10.1021/acsomega.2c07175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This work reports the analysis of mercury using a spectrofluorometric method combined with a sequential injection analysis (SIA) system. This method is based on the measurement of fluorescence intensity of carbon dots (CDs), which is quenched proportionally after adding mercury ions. Herein, the CDs underwent environmentally friendly synthesis using a microwave-assisted approach that provides intensive and efficient energy and shortens reaction time. After irradiation at 750 W for 5 min in a microwave oven, a dark brown CD solution with a concentration of 2.7 mg mL-1 was obtained. The properties of the CDs were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and UV-vis spectrometry. We presented for the first time the use of CDs as a specific reagent for the determination of mercury in skincare products with the SIA system to achieve rapid analysis and full automatic control. The as-prepared CD stock solution was diluted 10 times and used as a reagent in the SIA system. Excitation and emission wavelengths at 360 and 452 nm, respectively, were used to construct a calibration curve. Physical parameters affecting the SIA performance were optimized. In addition, the effect of pH and other ions was investigated. Under the optimum conditions, our method showed a linear range from 0.3 to 600 mg L-1 with an R 2 of 0.99. The limit of detection was 0.1 mg L-1. Relative standard deviation was 1.53% (n = 12) with a high sample throughput of 20 samples per hour. Finally, the accuracy of our method was validated by comparison using inductively coupled plasma mass spectrometry. Acceptable recoveries were also presented without a significant matrix effect. This method was also the first time that uses the untreated CDs for the determination of mercury(II) in skincare products. Therefore, this method could be an alternative for mercuric toxic control in other sample applications.
Collapse
Affiliation(s)
- Kanokwan Sakunrungrit
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Cheewita Suwanchawalit
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Kanokwan Charoenkitamorn
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Apisake Hongwitayakorn
- Department
of Computing, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Kamil Strzelak
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Sumonmarn Chaneam
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
- Flow
Innovation Research for Science and Technology Laboratories (FIRST
Labs), Bangkok 10400, Thailand
| |
Collapse
|
13
|
Sen Ding S, Xiao Li M, Xiang Y, Tang J, Zhang Q, Huang M, Hui Zhao X, Wang J, Mei Li C. Synergistic effect-mediated fluorescence switching of nitrogen-doped carbon dots for visual detection of alkaline phosphatase. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Hu Q, Wang W, Yang ZQ, Xiao L, Gong X, Liu L, Han J. An ultrasensitive sensing platform based on fluorescence carbon dots for chlorogenic acid determination in food samples. Food Chem 2022; 404:134395. [DOI: 10.1016/j.foodchem.2022.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
|
15
|
Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report the proof-of-concept of molecularly imprinted polymer (MIP) functionalized Bi2S3/Ti3C2TX MXene nanocomposites for photoelectrochemical (PEC)/electrochemical (EC) dual-mode sensing of chlorogenic acid (CGA). Specifically, the in-situ growth of the Bi2S3/Ti3C2TX MXene served as a transducer substrate for molecularly imprinted polymers such as PEC and EC signal generators, due to its high surface area, suitable bandwidth and abundant active sites. In addition, the chitosan as a binder was encapsulated into MIP by means of phase inversion on a fluorine-doped tin dioxide (FTO) electrode. In the determination of CGA as an analytical model, the dual-mode sensor based on MIP functionalized Bi2S3/Ti3C2TX MXene nanocomposites had good selectivity, excellent stability and acceptable reproducibility, which displayed a linear concentration range from 0.0282 μM to 2824 μM for the PEC signal and 0.1412 μM to 22.59 μM for the EC signal with a low detection limit of 2.4 nM and 43.1 nM, respectively. Importantly, two dual-response mode with different transduction mechanisms could mutually conform to dramatically raise the reliability and accuracy of detection compared to single-mode detection. This work is a breakthrough for the design of dual-mode sensors and will provide a reasonable basis for the construction of dual-mode sensor platforms.
Collapse
|
16
|
Otten M, Hildebrandt M, Kühnemuth R, Karg M. Pyrolysis and Solvothermal Synthesis for Carbon Dots: Role of Purification and Molecular Fluorophores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6148-6157. [PMID: 35502848 DOI: 10.1021/acs.langmuir.2c00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, the interest in carbon dots, graphene dots, or similar carbon-based nanoparticles has increased considerably. This interest is based on potentially high fluorescent quantum yields, controllable excitation-dependent emission, low toxicity, and convenient reaction conditions. Carbon dots are often seen as a promising alternative to classical semiconductor quantum dots that are typically made from toxic semiconductor materials. Surprisingly, aspects like the atomic structure, composition, mechanism of formation, and precise understanding of the photophysical properties of carbon dots are still mostly unknown. The large number of different precursor systems and the variety in synthesis routes make a direct comparison of different systems difficult. To advance this, we went for a systematic approach and compared the results of four synthesis routes using two different precursor systems. We used different spectroscopy and microscopy methods including fluorescence correlation spectroscopy to characterize the different reaction products. We found that for syntheses solely based on citric acid as the precursor, we obtain particles where the emission wavelength is strongly dependent on the excitation wavelength despite relatively low quantum yields. In comparison, when urea is added as a nitrogen doping reactant, we observe vastly increased quantum yields. By making use of a combination of dialysis and column chromatography, we were able to isolate various luminescent species with high quantum yields and verify the existence of different molecular fluorophores. A detailed and consistent characterization of the reaction products during the course of purification revealed strong interactions between molecular fluorophores and larger reaction products.
Collapse
Affiliation(s)
- Marius Otten
- Institut für Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Marco Hildebrandt
- Institut für Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Ralf Kühnemuth
- Institut für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Matthias Karg
- Institut für Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
| |
Collapse
|
17
|
Fan P, Liu C, Hu C, Li F, Lin X, Yang S, Xiao F. Green and facile synthesis of iron-doped biomass carbon dots as a dual-signal colorimetric and fluorometric probe for the detection of ascorbic acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj05047h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new method based on biomass Fe-CDs with fluorescence properties and simulated oxidase activity colorimetric and fluorometric dual-readout assay for highly effective detection of AA was established.
Collapse
Affiliation(s)
- Pengfei Fan
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Can Liu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Congcong Hu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Feifei Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xi Lin
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Shengyuan Yang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Fubing Xiao
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
18
|
Eryiğit Ş, Gelir A, Budak E, Ünlü C, Gömleksiz A, Özçeşmeci İ, Gül A. Effect of heteroatom-doped carbon quantum dots on the red emission of metal-conjugated phthalocyanines through hybridization. LUMINESCENCE 2021; 37:268-277. [PMID: 34806285 DOI: 10.1002/bio.4167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023]
Abstract
Quantum dots (QDs) are significant fluorescent materials for energy transfer studies with phthalocyanines (Pcs) and phthalocyanine (Pc)-like biomolecules (such as chlorophylls). Carbon-based QDs, especially, have been used in numerous studies concerning energy transfer with chlorophylls, but the numbers of studies concerning energy transfer between phthalocyanines and carbon-based QDs are limited. In this study, peripherally, hydroxythioethyl terminal group substituted metal-free phthalocyanine (H2 Pc) and zinc phthalocyanine (ZnPc) were noncovalently (electrostatic and/or π-π interaction) attached to carbon QDs containing boron and nitrogen to form QD-Pc nanoconjugates. The QD-Pc conjugates were characterized using different spectroscopic techniques (Fourier transform infrared spectroscopy and transmission electron microscopy). The absorption and fluorescence properties of QD-Pc structures in solution were studied. It was found that the quantum yields of the QDs slightly decreased from 30% to 25% upon doping the QDs with heteroatoms B and N. Förster resonance energy transfer efficiency was calculated as 33% for BCN-QD/ZnPc. For the other conjugates, almost no energy transfer from QDs to Pc cores was observed. It was shown that the energy transfer between QDs to Pc cores was completely different from the energy transfer between QDs and photosynthetic pigments, and therefore we concluded that heteroatom doping in the QD structure and the existence of zinc metal in the phthalocyanine structure is obligatory for an efficient energy transfer.
Collapse
Affiliation(s)
- Şule Eryiğit
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Ali Gelir
- Faculty of Science and Letters, Department of Engineering Physics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esranur Budak
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Caner Ünlü
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey.,Department of Nanoscience and Nanoengineering, Istanbul Technical University, Maslak, Istanbul, Turkey.,Istanbul Technical University Nanotechnology Research and Application Center (ITUnano), Istanbul, Turkey
| | - Azize Gömleksiz
- Faculty of Science and Letters, Department of Engineering Physics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - İbrahim Özçeşmeci
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Ahmet Gül
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
19
|
Design of Novel Photocatalytic Films for the Protection of Architectural Surfaces via the Incorporation of Green Photocatalysts. COATINGS 2021. [DOI: 10.3390/coatings11080934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In conservation science the demand of multifunctional green materials displaying water repellency, consolidation, resistance to organic pollutants and pigments is constantly increasing. This research developed a green nanocomposite exhibiting photocatalytic, hydrophobic, consolidation and self-cleaning properties. This was achieved by synthesizing a TiO2 photocatalyst enriched with carbon dots (C-dots) and successfully incorporated into a tetraethoxysilane nanocomposite modified with nano-calcium oxalate and polydimethylsiloxane. The TiO2/C-dots that were prepared with a simple, low temperature, cost-effective and large-scale procedure were assessed via analytical and spectroscopic techniques and were resulted in anatase structure ranging in size from 10 to 40 nm. Photooxidation measurements displayed that TiO2/C-dots nanoparticles could photodegrade completely Methyl Orange (MO) under UV and visible irradiation after 120 min. The photocatalytic performance of the nanocomposite with TiO2/C-dots resulted promising under UV after longer irradiation time. The degradation of MO was faster on bulk xerogels containing the TiO2/C-dots than the corresponding ones with TiO2. The treatment of concrete, limestone and lime mortars with the nanocomposite proved to be compatible with the substrates in terms of aesthetical aspects. This study demonstrates encouraging potential for large-scale production of a multifunctional protective composite that offers hydrophobicity, self-cleaning properties and consolidation to architectural surfaces.
Collapse
|
20
|
Qiao H, Zhang H, Khan A, Li B, Ge L, Liu Y, Bian W, Liu Z, Xie J. Synthesis of cationic carbon dots and their effects on human serum proteins and in vitro blood coagulation. LUMINESCENCE 2021; 36:1671-1683. [PMID: 34164901 DOI: 10.1002/bio.4108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023]
Abstract
Cationic carbon dots (CCDs) are a promising alternative to gene-delivery systems, and good biosafety levels are crucial for their in vivo use. In this study, spherical and monodispersed CCDs with an average surface potential of +28.7 mV were prepared using sucrose and glutamate (denoted SG-CCDs) using a one-pot autoclave-assisted method. Molecular interactions between the SG-CCDs and four major human serum proteins (albumin, immunoglobulin G, fibrinogen, and transferrin) were investigated. The results were further verified on human serum, and the effect of the SG-CCDs on in vitro blood coagulation was examined. The results showed that the fluorescence of human serum was clearly quenched by the SG-CCDs through a dynamic collision mechanism. Moreover, SG-CCDs at a concentration of 20 μM exhibited minor effects on the secondary structure of human serum. The activated partial thromboplastin and prothrombin time as well as the fibrinogen concentration were not changed, indicating that the SG-CCDs did not interfere with the coagulation process. This study provided an understandable background on the behaviour of CCDs in clinical applications.
Collapse
Affiliation(s)
- Hua Qiao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huichao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ajab Khan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Ge
- Analytical Instrumentation Centre, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, China
| | - Yequn Liu
- Analytical Instrumentation Centre, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, China
| | - Wei Bian
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Emami E, Mousazadeh MH. pH-responsive zwitterionic carbon dots for detection of rituximab antibody. LUMINESCENCE 2021; 36:1198-1208. [PMID: 33749984 DOI: 10.1002/bio.4045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 01/25/2023]
Abstract
Zwitterionic carbon dots (CDs) have received much attention as a result of good photostability, high biocompatibility, and high quantum yield. In this study, novel zwitterionic CDs were synthesized using a simple hydrothermal method of citric acid (CA) and l-histidine as carbon and nitrogen precursors, respectively. Prepared zwitterionic CDs have an average particle size of 4 nm diameter and showed green fluorescence with a peak at 530 nm when excited at 470 nm; quantum efficiency was 39.34% using rhodamine 6G as a baseline. The fluorescence intensity of zwitterionic CDs was quenched by rituximab in the range 0-400 μmol L-1 , with a limit of detection of 27 μmol L-1 . In addition, the synthesized zwitterionic CDs had low toxicity, good stability, and high selectivity and sensitivity sensing for rituximab, therefore zwitterionic CDs are a promising candidate for practical applications.
Collapse
Affiliation(s)
- Elham Emami
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| | - Mohammad H Mousazadeh
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| |
Collapse
|