1
|
Meng Y, Wu L, Zhao J, Shuang S, Dong C, Nie J. Facile synthesis of long-wavelength emission carbon dots for hypochlorite sensing and intracellular pH imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124767. [PMID: 39013304 DOI: 10.1016/j.saa.2024.124767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Hypochlorite (ClO-), a typical reactive oxygen species, plays an irreplaceable roles in various biological processes. In this work, long-wavelength emission carbon dots (LW-CDs) were fabricated through one-step hydrothermal method by using l-cysteine (cys) and neutral red (NR) as precursors for monitoring of hypochlorite and intracellular pH. Characterizations of as-prepared LW-CDs showed that they had excellent water solubility, high optical stability and sensitive response behavior. Fluorescence intensity of LW-CDs decayed in the presence of ClO- linearly from 10 to 162.5 μM (LOD = 1.021 μM) based on static quenching effect with ideal selectivity. Besides, LW-CDs revealed a pH responsive behavior in the pH range of 2.0 to 10.0, exhibited dual good linear relationships in the pH ranges of 4.2-5.8 and 5.8-7.4. The LW-CDs can also be utilized as imaging reagents in Hela living cells owing excellent biocompatibility and low cytotoxicity. These results demonstrated that the as-mentioned LW-CDs are expected to serve as excellent long wavelength emitting nanomaterials for fluorescence sensing and monitoring of cell fluctuations.
Collapse
Affiliation(s)
- Yating Meng
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China
| | - Linzhu Wu
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China
| | - Junxiu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China.
| |
Collapse
|
2
|
Luo X, Liu Z, Wang L, Gao L, Wang D, Zhang T, Chen D. Smartphone-assisted sensing platform based on dual-responsive nitrogen-doped carbon dots for enzyme-free and visual quantitative detection of Cu2+ and glyphosate. Microchem J 2024; 207:112166. [DOI: 10.1016/j.microc.2024.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Li Z, Dong J, Wang P, Li D, Li X, Geng H. Detection of Ferric Ion by Fluorescent Carbon Nano Dots Synthesized from Forsythia Residue. J Fluoresc 2024:10.1007/s10895-024-04035-7. [PMID: 39549188 DOI: 10.1007/s10895-024-04035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
To fully utilize the wastes of the traditional Chinese herbs, a highly functionalized fluorescent carbon nano dots (CDs) based ferric ion sensor was prepared from forsythia residue via a one-step hydrothermal method. Under transmission electron microscope (TEM), the CDs were observed to be spherical with the diameter in the range of 5-20 nm. Comprehensive analyses documented the CDs' favorable morphology, diverse functional groups, high water solubility, remarkable optical properties, and exceptional stability under various environmental conditions. Moreover, the CDs exhibited good optical properties with vivid green photoluminescence (PL) when they were exposed to ultraviolet (UV) light. Furthermore, the prepared CDs demonstrated selective fluorescence quenching behavior towards ferric ions with satisfactory sensitivity and a low limit of detection (LOD) of 4.3 µM. Additionally, the CDs displayed good selectivity towards Fe3+ and the least interference with several other metal ions. Consequently, this strategy could be effectively applied to real water samples, demonstrating its potential for broader applications.
Collapse
Affiliation(s)
- Zhaoxia Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar, Xinjiang, 843300, China
| | - Jia Dong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panchen Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongchun Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyi Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar, Xinjiang, 843300, China.
| |
Collapse
|
4
|
Osman MM, El-Shaheny R, Ibrahim FA. Alfalfa biomass as a green source for the synthesis of N,S-CDs via microwave treatment. Application as a nano sensor for nifuroxazide in formulations and gastric juice. Anal Chim Acta 2024; 1319:342946. [PMID: 39122268 DOI: 10.1016/j.aca.2024.342946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Researchers have investigated different techniques for synthesis of carbon dots. These techniques include Arc discharge, laser ablation, oxidation, water/solvothermal, and chemical vapor deposition. However, these techniques suffer from some limitations like the utilization of gaseous charged particles, high current, high temperature, potent oxidizing agents, non-environmentally friendly carbon sources, and the generation of uneven particle size. Therefore, there was a significant demand for the adoption of a new technology that combines the environmentally friendly aspects of both bio-based carbon sourcing and synthesis technique. RESULTS Medicago sativa L (alfalfa)-derived N, S-CDs have been successfully synthesized via microwave irradiation. The N,S-CDs exhibit strong fluorescence (λex/em of 320/420 nm) with fluorescence quantum yield of 2.2 % and high-water solubility. The produced N,S-CDs were characterized using TEM, EDX, Zeta potential analysis, IR, UV-Visible, and fluorescence spectroscopy. The average diameter of the produced N, S-CDs was 4.01 ± 1.2 nm, and the Zeta potential was -24.5 ± 6.63 mv. The stability of the produced nano sensors was also confirmed over wide pH range, long time, and in presence of different ions. The synthesized N, S-CDs were employed to quantify the antibacterial drug, nifuroxazide (NFZ), by fluorescence quenching via inner filter effect mechanism. The method was linear with NFZ concentration ranging from 1.0 to 30.0 μM. LOD and LOQ were 0.16 and 0.49 μM, respectively. The method was applied to quantify NFZ in simulated gastric juice (SGJ) with % recovery 99.59 ± 1.4 in addition to pharmaceutical dosage forms with % recovery 98.75 ± 0.61 for Antinal Capsules® and 100.63 ± 1.54 for Antinal suspension®. The Method validation was performed in compliance with the criteria outlined by ICH. SIGNIFICANCE AND NOVELTY The suggested approach primarily centers on the first-time use of alfalfa, an ecologically sustainable source of dopped-CDs, and a cost-effective synthesis technique via microwave irradiation, which is characterized by low energy consumption, minimized reaction time, and the ability to control the size of the produced CDs. This is in line with the growing global recognition of the implementation of green analytical chemistry principles.
Collapse
Affiliation(s)
- Mohamed M Osman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Fawzia A Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Li Z, Dong Y, Li X, Li D, Dong J, Wang P, Chen S, Geng H. Detection of sulphur(II) of carbon dots synthesized from Gardenia residue. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4409-4414. [PMID: 38904209 DOI: 10.1039/d4ay00909f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The detection of anions using carbon dots (CDs) has received less attention compared to cations. Therefore, the present study aimed to develop a fluorescence sensor based on carbon dots (CDs) capable of detecting S2- in real water samples. The CDs were successfully prepared from the residues of a traditional Chinese herb, Gardenia, which emitted green photoluminescence (PL) under ultraviolet light irradiation. The as-prepared CDs were quasi-spherical in shape and ranged in size from 10 to 30 nm. Different detailed analyses proved that the CDs had good morphology, various functional groups, high water solubility, great optical features, and excellent stability under diverse environmental conditions. The ion detection showed that only Ag+ had the strongest fluorescence quenching effect on the CDs, however, the addition of S2- could recover their fluorescence. Based on these results, an "off-on" fluorescence sensor was achieved to selectively detect the concentration of S2- in real water samples with a limit of detection (LOD) of 39 μM, which further expanded the application of residues from traditional Chinese herbal medicine.
Collapse
Affiliation(s)
- Zhaoxia Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar, Xinjiang 843300, China
| | - Yuchuan Dong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinyi Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dongchun Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jia Dong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Panchen Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuwei Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar, Xinjiang 843300, China
| |
Collapse
|
6
|
Green Carbon Dots: Applications in Development of Electrochemical Sensors, Assessment of Toxicity as Well as Anticancer Properties. Catalysts 2023. [DOI: 10.3390/catal13030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Carbon dots are one of the most promising nanomaterials which exhibit a wide range of applications in the field of bioimaging, sensing and biomedicine due to their ultra-small size, high photostability, tunable fluorescence, electrical properties, etc. However, green carbon dots synthesized from several natural and renewable sources show some additional advantages, such as favorable biocompatibility, wide sources, low cost of production and ecofriendly nature. In this review, we will provide an update on the latest research of green carbon dots regarding their applications in cancer therapy and in the development of electrochemical sensors. Besides, the toxicity assessment of carbon dots as well as the challenges and future direction of research on their anticancer and sensing applications will be discussed.
Collapse
|
7
|
Nitrogen-doped Carbon dots for sequential ‘ON-OFF-ON’ fluorescence probe for the sensitive detection of Fe3+ and L-alanine/L-histidine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Li N, Hu C, Zhang W, Ma R, Zhang L, Qiao J. Nitrogen-Doped Carbon Dots as a Fluorescent Probe for the Highly Sensitive Detection of Bilirubin and Cell Imaging. LUMINESCENCE 2022; 37:913-921. [PMID: 35322522 DOI: 10.1002/bio.4236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/06/2022]
Abstract
Nitrogen-doped carbon dots (NCDs) with bright blue fluorescence were constructed by a hydrothermal method using sucrose and L-proline as raw materials. The NCDs were characterized by transmitted electron microscopy, X-ray diffractometry, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and ultraviolet-visible absorption (UV-vis) and fluorescence spectroscopy to investigate the morphology, elemental composition, and optical properties. The NCDs had good water solubility, high dispersibility with an average diameter of only 1.7 nm, and satisfactory optical properties with a fluorescence quantum yield of 23.4%. The NCDs were employed for the detection of bilirubin. A good linear response of the NCDs in the range 0.35-9.78 μM was obtained for bilirubin with a detection limit of 33 nM. The NCDs were also applied to the analysis of real samples, serum and urine, with a recovery of 95.34%-104.66%. The low cytotoxicity and good biocompatibility of the NCDs were indicated by an MTT assay and cell imaging of HeLa cells. Compared with other detection systems, using NCDs for bilirubin detection was a facile and efficient method with good selectivity and sensitivity.
Collapse
Affiliation(s)
- Ningbo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China.,Department of Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Chuqian Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Wenkun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Rong Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Liting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Jie Qiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China.,Department of Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Li F, Fan P, Chen X, Lin X, Liu C, Hu C, Yang S, Xiao F. A ratiometric fluorescent strategy based on copper nanoclusters/carbon dots for sensitive detection of doxorubicin. LUMINESCENCE 2022; 37:868-875. [PMID: 35304812 DOI: 10.1002/bio.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Sensitive detection of doxorubicin (DOX) is critical for clinical theranostics. A novel ratiometric fluorescence strategy based on inner filter effect (IFE) has been established for sensitive detection of DOX by designing a ratiometric fluorescence probe. In the presence of DOX, the fluorescence intensity of copper nanoclusters (CuNCs) at 485 nm decreases, and the fluorescence intensity of carbon dots (CDs) at 560 nm increases. Therefore, DOX can be quantitatively detected by measuring the ratio of the fluorescence intensities at 560 and 485 nm (F560 /F485 ). The F560 /F485 ratio exhibits a linear correlation to the DOX concentration in the range from 1.0×10-8 M to 1.0×10-4 M with the detection limit of 3.7 nM. Furthermore, this method is also successfully applied to analysis of DOX in human plasma samples, affording an effective platform for drug safety management.
Collapse
Affiliation(s)
- Feifei Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Fan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xinbei Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xi Lin
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Jiading Center for Disease Control and Prevention, Shanghai, China
| | - Can Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Congcong Hu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fubing Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Hashemi N, Mousazadeh MH. Green synthesis of photoluminescent carbon dots derived from red beetroot as a selective probe for Pd2+ detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Green synthesis of carbon dots for ultrasensitive detection of Cu2+ and oxalate with turn on-off-on pattern in aqueous medium and its application in cellular imaging. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|