1
|
Jin Y, Ai W, Chen G, Zhang G, Wang F, Zhou T, Zhang Z, Wang X. Dual-mode fluorescent and colorimetric sensing of thiourea and aluminum ion in natural water based on CuO nanoparticles. Mikrochim Acta 2024; 191:666. [PMID: 39400731 DOI: 10.1007/s00604-024-06758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
CuO nanoparticles with good water solubility and uniform particle size were successfully prepared. Interestingly, the oxidase-like activity of CuO NPs was continuously enhanced by the addition of thiourea (TU), and the enzyme activity was further enhanced by the addition of aluminum ion (Al3+). By systematically exploring and optimizing the experimental conditions, including the key parameters such as temperature, reaction time, and pH, a fluorescence-colorimetric dual-mode sensing system based on CuO nanoparticles was constructed. The detection range of TU and Al3+ were 1-100 µM and 1-100 µM, respectively, and the selectivity and precision of detection were further improved. In addition, the catalytic mechanism of CuO NPs as oxidase-like catalysts and the specific process in the reaction were investigated. Finally, the nano-sensing system was successfully applied to the analysis of three real environmental samples, namely, tap water, lake water and river water, which provided an effective new strategy for the future development of nano-sensing technology for TU and Al3+.
Collapse
Affiliation(s)
- Yao Jin
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wenhui Ai
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ge Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guodong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fang Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ting Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhiqing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiufeng Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
2
|
Mei X, Luo W, Li H, Pu S. Synthesis and photophysical investigation of Schiff base as a Mg 2+ and Zn 2+ fluorescent chemosensor and its application. LUMINESCENCE 2023; 38:250-259. [PMID: 36649122 DOI: 10.1002/bio.4443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
In view of the fluorescent switching properties and anti-fatigue properties of diarylethene, a diarylethene fluorescent chemosensor for the immediate detection of zinc ion (Zn2+ ) and magnesium ion (Mg2+ ) in acetonitrile was synthesized in this article. The structure of 1o was determined by performing spectroscopy and elemental analysis. The presence of Zn2+ or Mg2+ made the chemosensor 1o show an obvious "turn-on" fluorescent signal (bright yellow-green for Mg2+ and bright cyan for Zn2+ ). The fluorescent change caused by the 1:1 binding of 1o and Zn2+ or Mg2+ might be due to hindering the excited-state intramolecular proton transfer (ESIPT) process, which were bolstered by Benesi-Hildebrand analysis, Job's plot curves, proton nuclear magnetic resonance (1 H-NMR) titration and mass spectrometry. The limits of detection were acquired from the standard curve plots for Mg2+ at 44.6 nM and for Zn2+ at 14 nM. Based on the fluorescent behaviors, a logic gate was constructed with the emission intensity at 528/518 nm as output signal, the ultraviolet-visible (UV-vis) lights, Mg2+ /Zn2+ and EDTA as input signals. Exogenous Zn2+ and Mg2+ fluorescent bioimaging were performed on Hela cells with 1o, indicating its potential application in biodiagnostic analysis. In particular, 1o was manufactured into test paper, and Zn2+ or Mg2+ can be conveniently, efficiently and qualitatively identified by the fluorescent color variation of the test strips.
Collapse
Affiliation(s)
- Xin Mei
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China
| | - Wentao Luo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China
| | - Hui Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, P. R. China.,Department of Ecology and Environment, Yuzhang Normal University, Nanchang, P. R. China
| |
Collapse
|
3
|
Inhibition to dual enzyme-like activities of Ag/CeO2 nanozymes for the detection of thiourea. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Enbanathan S, Manickam S, Dhanthala Thiyagarajan M, Jothi D, Manojkumar S, Munusamy S, Murugan D, Rangasamy L, Balijapalli U, Kulathu Iyer S. Rational design of diphenyl-λ5σ4-phosphinine based fluorescent probe for the selective detection of Hg2+ ions: Real application in cell imaging and paper strips. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Al-Saidi HM, Khan S. A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions. Crit Rev Anal Chem 2022; 54:1810-1836. [PMID: 36251012 DOI: 10.1080/10408347.2022.2133561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Organic compounds display several electronic and structural features which enable their application in various fields, ranging from biological to non-biological. These compounds contain heteroatoms like sulfur, nitrogen and oxygen, which provide coordination sites to act as ligands in the field of coordination chemistry and are used as chemosensors to detect various metal ions. This review article covers different organic compounds including thiourea, Schiff base, pyridine, thiophene, coumarin, triazolyl pyrenes, imidazole, fluorescein, thiazole, tricarbocyanine, rhodanine, porphyrin, hydrazone, benzidine and other functional groups based chemosensors, that contain heteroatoms like sulfur, nitrogen and, oxygen for fluorimetric and colorimetric detection of Ag+ in different environmental, agricultural, and biological samples. Further, the sensing mechanism and performances of these chemosensors have been discussed, which could help the readers for the future design of highly efficient, selective, and sensitive chemosensors for the detection and determination of Ag+ ions.
Collapse
Affiliation(s)
- Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
A Practical Hydrazine-Carbothioamide-Based Fluorescent Probe for the Detection of Zn2+: Applications to Paper Strip, Zebrafish and Water Samples. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A practical hydrazine-carbothioamide-based fluorescent chemosensor TCC (N-(4-chlorophenyl)-2-(thiophene-2-carbonyl)hydrazine-1-carbothioamide) was applied for Zn2+ detection. TCC exhibited selective fluorescence emission for Zn2+ and did not show any interference with other metal ions. In particular, TCC was utilized for the detection of Zn2+ in paper strips, zebrafish and real water samples. TCC could detect Zn2+ down to 0.39 μM in the solution phase and 51.13 μM in zebrafish. The association ratio between TCC and Zn2+ was determined to be 2:1 by ESI-mass and Job plot. The sensing mechanism of TCC for Zn2+ was illustrated to be a chelation-enhanced fluorescence process through spectroscopic experiments and theoretical calculations.
Collapse
|
7
|
Sultana R, Arif R, Rana M, Ahmedi S, Mehandi R, Akrema, Manzoor N, Rahisuddin. Ni (II) detection by 2-amino-5-substituted-1,3,4-oxadiazole as a chemosensor using photo-physical method: Antifungal, antioxidant, DNA binding, and molecular docking studies. LUMINESCENCE 2022; 37:408-421. [PMID: 34986516 DOI: 10.1002/bio.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine and the structural confirmation was supported by 1 H and 13 C NMR, FT-IR spectroscopy, and LC-MS spectrometry. Its sensing ability was examined towards Ni2+ ion with binding constant 1.04 x 105 over the other suitable metal cations (Ca2+ , Co2+ , Cr3+ , Ag+ , Pb2+ , Fe3+ , Mg2+ , and K+ ) by UV-visible and fluorescence spectroscopic studies and the minimum concentration of Ni2+ ion with LOD was found to be 9.4μM. Job's plot method gives the binding stoichiometry ratio of Ni2+ ion vs oxadiazole derivative 2 to be 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with Calf Thymus DNA was supported by UV-Vis, fluorescence, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gives the binding score for oxadiazole derivative 2 to be -6.5 kcal/mol, which further confirms the intercalative interaction. In addition, the anti-fungal activity of oxadiazole derivative 2 was also screened against fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion method. In the antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against DPPH and H2 O2 free radicals.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rizwan Arif
- Department of Chemistry, Lingayas Vidyapeeth, Faridabad, Haryana, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Akrema
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|