1
|
Al-Qahtani SD, Attia YA, Al-Senani GM. Development of strontium aluminate-printed nonwoven fabric from recycled cotton cellulose for smart wearable photochromic applications. LUMINESCENCE 2024; 39:e4903. [PMID: 39268692 DOI: 10.1002/bio.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Smart photochromic and fluorescent textile refers to garments that alter their colorimetric properties in response to external light stimulus. Cotton fibers have been reported as a main resource for many textile and non-textile industries, such as automobiles, medical devices, and furniture applications. Cotton is a natural fiber that is distinguished with breathability, softness, cheapness, and highly absorbent. However, there have been growing demands to find other resources for cotton textiles at high quality and low cost for various applications, such as sensor for harmful ultraviolet radiation. Herein, we present a novel method toward luminescent and photochromic nonwoven textiles from recycled cotton waste. Using the screen-printing technology, a cotton fabric that is both photochromic and fluorescent was developed using aqueous inorganic phosphor nanoparticles (10-18 nm)-containing printing paste. Both CIE Lab color coordinates and photoluminescence spectra showed that the transparent film printed on the nonwoven fabric develops a reversible green emission (519 nm) under ultraviolet light (365 nm), even at low pigment concentration (2%) in the printing paste. Colorfastness of printed fabrics showed high durability and photostability.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yasser A Attia
- Department of Laser in Meteorology, Photochemistry & Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Abdelrahman MS, Khattab TA. Recent advances in photoresponsive printing inks for security encoding applications. LUMINESCENCE 2024; 39:e4800. [PMID: 38923447 DOI: 10.1002/bio.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest. There have been various photochromic agents, such as polymer nanoparticles, quantum and carbon dots, and organic and inorganic fluorophores and luminophores, which have been broadly used for antiforging applications. In comparison to organic agents, inorganic photochromic materials have better stability under reversible/long-term light illumination. Recently, the remarkable optical characteristics and chemical stability of photoluminescent and photochromic agents have led to their extensive usage anticounterfeiting products. There have been also several strategies to tackle the rising problem of counterfeiting. Both of solvent-based and water-based inks have been developed for security encoding purposes. Additionally, the printing methods, including screen printing, labeling, stamping, inkjet printing, and handwriting, that have been used to apply anticounterfeiting inks onto various surfaces are discussed. The limitations of photoluminescent and photochromic agents and the potential for their future preparation to combat counterfeiting were discussed. This review would benefit academic researchers and industrial developers who are interested in the area of security printing.
Collapse
Affiliation(s)
- Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Albalawi MA. Modification of wood lignin and integration with multifunctional polyester nanocomposite. Int J Biol Macromol 2024; 267:131466. [PMID: 38599420 DOI: 10.1016/j.ijbiomac.2024.131466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
A simple strategy was introduced to develop fluorescent wood with the ability to alter its color when exposed to both visible and ultraviolet lights. Injecting a combination of europium and dysprosium doped aluminate (EDA; 7-12 nm) nanoparticles and polyester resin (PET) into a lignin-modified wood (LMW) produced a translucent smart wooden window with fluorescence and afterglow emission properties. In order to prevent formation of aggregates and improve the preparation process of transparent woods, EDA must be properly disseminated in the polyester matrix. We analyzed the fluorescent wood samples using a variety of spectroscopic and microscopic methods, including energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), photoluminescence spectra, and hardness tests. We found that the photoluminescent woods had an excitation peak at 365 nm and emission peaks at 437 nm and 517 nm. The translucent luminous woods showed rapid and reversible emission response to ultraviolet light. Fluorescence emission was detected for samples with lower EDA content, and afterglow emission was detected for wood samples with higher EDA content. Increases in EDA content were associated with improvements in water resistance and ultraviolet radiation protection in the EDA@PET-infiltrated wood.
Collapse
Affiliation(s)
- Marzough Aziz Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia.
| |
Collapse
|
4
|
El-Newehy MH, Aldalbahi A, Thamer BM, Abdulhameed MM. Electrospinning of poly(ethylene oxide)/glass hybrid nanofibres for anticounterfeiting encoding. LUMINESCENCE 2024; 39:e4746. [PMID: 38644460 DOI: 10.1002/bio.4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The use of photochromism to increase the credibility of consumer goods has shown great promise. To provide mechanically dependable anticounterfeiting nanofibres, it has also been critical to improve the engineering processes of authentication patterns. Mechanically robust and photoluminescent electrospun poly(ethylene oxide)/glass (PGLS) nanofibres (150-350 nm) immobilized with nanoparticles of lanthanide-doped aluminate (NLA; 8-15 nm) were developed using electrospinning technology for anticounterfeiting purposes. The provided nanofibrous membranes changed colour from transparent to green when irradiated with ultraviolet light. By delivering NLA with homogeneous distribution without aggregations, we were able to keep the nanofibrous membrane transparent. When excited at 365 nm, NLA@PGLS nanofibres showed an emission intensity at 517 nm. The hydrophobicity of NLA@PGLS nanofibres improved by raising the pigment concentration as the contact angle was increased from 146.4° to 160.3°. After being triggered by ultraviolet light, NLA@PGLS showed quick and reversible photochromism without fatigue. It was shown that the suggested method can be applied to reliably produce various anticounterfeiting materials.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
El-Newehy MH, Aldalbahi A, Thamer BM, Abdulhameed MM. Electrospinning of photochromic poly(ethylene terephthalate) nanofibers toward information authentication. LUMINESCENCE 2024; 39:e4626. [PMID: 37986686 DOI: 10.1002/bio.4626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The use of photochromism to enhance the anti-counterfeiting of a wide range of economic goods is an intriguing prospect. Creating a translucent anti-counterfeiting nanocomposite is critical to improving the engineering procedures of the encoding materials. Herein, we use electrospinning to produce anti-counterfeiting nanofibrous films from nanoparticles of rare-earth aluminate (NREA) and recycled poly(ethylene terephthalate) (PET). Different nanofiber films with distinct emission properties were created using different ratios of NREA. The ultraviolet (UV)-induced photochromism of the NREA@PET nanofibers was proved. Immobilizing NREA at the nanoscale ensures better dispersion without agglomeration in the PET nanofibrous matrix, which is essential for the development of transparent NREA@PET films. Diameters of 4-13 nm for NREA were shown using transmission electron microscopy. X-ray fluorescence spectroscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, elemental mapping, and other techniques were used to investigate the photochromic nanofibers' morphology, elemental contents, optical transmittance, and mechanical performance. It was observed that the nanofiber diameter in NREA@PET was between 150 and 250 nm. Excitation and emission bands of electrospun NREA@PET nanofibrous films were monitored at 365 and 518 nm, respectively. The superhydrophobicity of NREA@PET increased with increasing NREA concentration. The transparent nanofibers exhibited fast and reversible dual-mode fluorescent photochromism to green emission without fatigue when stimulated beneath a UV source. Using the present anti-counterfeiting films can be regarded as a simple technique to develop flexible materials to launch an ideal marketplace with affordable societal and economic advantages.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Alrefaee SH, Alnoman RB, Alenazi NA, Alharbi H, Alkhamis K, Alsharief HH, El-Metwaly NM. Electrospun glass nanofibers to strengthen polycarbonate plastic glass toward photoluminescent smart materials. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122986. [PMID: 37336189 DOI: 10.1016/j.saa.2023.122986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Electrospun glass nanofibers (GNFs) were used to strengthen polycarbonate (PC) to create long-persistent photoluminescent and fluorescent smart materials such as afterglow concrete and smart window. Physical integration of lanthanide-activated aluminate (LA) nanoparticles (NPs) yielded transparent GNFs@PC smart sheets. Spectral investigations utilizing photoluminescence and CIE Lab parameters were performed to confirm that the translucent appearance of GNFs@PC changed to green when exposed to UV light. This fluorescence activity was quickly reversible for the GNFs@PC hybrids with low concentrations of LANPs, which indicate fluorescence emission. Higher phosphor concentrations in GNFs@PC led to longer-lasting afterglow photoluminescence and slower reversibility. The GNFs@PC hybrids showed an emission band detected at 518 nm upon excitation at 368 nm. The morphological characteristics of LANPs and GNFs were analyzed by transmission electron microscopy (TEM), which revealed sizes of 11-26 nm and 250-300 nm, respectively. GNFs were prepared using electrospinning technology and then used as a roughening agent into PC sheets. Morphological characteristics of GNFs and GNFs@PC smart sheets were examined using energy-dispersive X-ray spectroscopy (EDXA), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The GNFs@PC smart sheets were shown to have enhanced scratch resistance in comparison to LANPs-free PC control sample. Increases in LANPs concentration enhanced both hydrophobicity and UV protection.
Collapse
Affiliation(s)
- Salhah H Alrefaee
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 30799, Saudi Arabia
| | - Rua B Alnoman
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Haifa Alharbi
- Department of Chemistry, College of Science, Northern Border University, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Hatun H Alsharief
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia.
| |
Collapse
|
7
|
Nafady A, Alothman AA, Shaikh SF. Fabrication of photoluminescent electrically conductive and flame-retardant cellulose fabric incorporating polyaniline/strontium aluminate nanocomposite for a plethora of useful applications. Int J Biol Macromol 2023:125384. [PMID: 37330101 DOI: 10.1016/j.ijbiomac.2023.125384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The pad dry cure method was used to coat linen fibers with a smart nanocomposite that has photoluminescence, electrical conductivity, flame resistance, and hydrophobic properties. Environmentally benign silicone rubber (RTV) was utilized to encapsulate nanoparticles of rare-earth activated strontium aluminate nanoparticles (RESAN; 10-18 nm), polyaniline (PANi) and ammonium polyphosphate (APP) into linen surface. The flame resistance of the treated linen fabrics was evaluated for their self-extinguishing capabilities. The flame-retardant qualities of linen were retained for 24 washings. Additionally, the superhydrophobicity of the treated linen has marked improved upon increasing the concentration of RESAN. The colorless luminous film deposited onto linen surface was excited at 365 nm and emitted a wavelength of 518 nm. In accordance with the results of CIE (Commission internationale de l'éclairage) Lab and luminescence analysis, the photoluminescent linen gave rise to diverse colors, including off-white in daylight, green beneath UV radiation and greenish-yellow in a darkened room. The treated linen displayed sustained phosphorescence, as evidenced by decay time spectroscopy. The bending length and air permeability of linen were evaluated for their mechanical and comfort assessment. Finally, the coated linens exhibited remarkable antibacterial activity along with strong UV protection.
Collapse
Affiliation(s)
- Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Ahmed E, Maamoun D, Hassan TM, Khattab TA. Development of functional glow-in-the-dark photoluminescence linen fabrics with ultraviolet sensing and shielding. LUMINESCENCE 2022; 37:1376-1386. [PMID: 35708545 DOI: 10.1002/bio.4310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 12/18/2022]
Abstract
Linen fibres were coated with a glow-in-the-dark photoluminescence, flame-retarding, and hydrophobic smart nanocomposite using the pad-dry-curing process. Ecologically friendly ammonium polyphosphate and lanthanide-activated strontium aluminium oxide (LSAO) nanoparticles were immobilized into linen fabric using eco-friendly room-temperature-vulcanizing silicone rubber. Different analytical techniques were used to examine the morphological characteristics and elemental compositions of LSAO nanoparticles and treated linen textiles. The self-extinguishing properties of the treated linen textiles were tested for their fire resistance. After 24 washing cycles, the coated linen samples retained their flame-retarding properties. The treated linen's superhydrophobicity rose in direct proportion to the LSAO concentration. After being excited at 365 nm, the colourless luminescent film that was coated on linen surface gave out an emission wavelength of 519 nm. The photoluminescent linen was monitored to create a range of different colours, including off-white in daytime light and green under ultraviolet (UV) light radiation, according to the Commission Internationale de l'éclairage laboratory colorimetric coordinates and photoluminescence spectra. Emission, excitation, and lifetime spectral analysis of the treated linen revealed persistent phosphorescence. For mechanical and comfort evaluation, the coated linen textiles' bending length and air permeability were assessed. Good UV light shielding and enhanced antibacterial activity were detected in the treated linens.
Collapse
Affiliation(s)
- Esraa Ahmed
- Department of Technical and Industrial Education, Faculty of Education, Helwan University, Egypt
| | - Dalia Maamoun
- Printing, Dyeing and Finishing Department, Faculty of Applied Arts, Helwan University, Cairo, Egypt
| | - Talaat M Hassan
- Department of Technical and Industrial Education, Faculty of Education, Helwan University, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|