1
|
Singh A, Himanshu M, Verma B, Syed A, Elgorban AM, Wong LS, Lal B, Singh R, Srivastava N. Rice straw waste-based green synthesis and characterizations investigation of Fe-MoS 2-derived nanohybrid. LUMINESCENCE 2024; 39:e4884. [PMID: 39258707 DOI: 10.1002/bio.4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
In present work, synthesis of a nanohybrid material using Fe and MoS2 has been performed via a cost-effective and environmentally friendly route for sustainable manufacturing innovation. Rice straw extract was prepared and used as a reducing and chelating agent to synthesize the nanohybrid material by mixing it with molybdenum disulfide (MoS2) and ferric nitrate [Fe (NO3)3.9H2O], followed by heating and calcination. The X-ray diffraction (XRD) pattern confirms the formation of a nanohybrid consisting of monoclinic Fe2(MoO4)3, cubic Fe2.957O4, and orthorhombic FeS with 86% consisting of Fe2(MoO4)3. The properties were analyzed through Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results of the dynamic light scattering (DLS) study revealed a heterogeneous size distribution, with an average particle size of 48.42 nm for 18% of particles and 384.54 nm for 82% of particles. Additionally, the zeta potential was measured to be -18.88 mV, suggesting moderate stability. X-ray photoelectron spectroscopy (XPS) results confirmed the presence of both Fe2+ and Fe3+ oxidation states along with the presence of Molybdenum (Mo), oxygen (O), and Sulphur (S). The prepared nanohybrid material exhibited a band gap of 2.95 eV, and the photoluminescence intensity increased almost twice that of bare MoS2. The present work holds potential applications in photo luminescent nanoplatform for biomedical applications.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Magan Himanshu
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Bhawna Verma
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi, India
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
2
|
Srinivasan S, Raajasubramanian D, Ashokkumar N, Vinothkumar V, Paramaguru N, Selvaraj P, Kanagalakshimi A, Narendra K, Shanmuga Sundaram CK, Murali R. Nanobiosensors based on on-site detection approaches for rapid pesticide sensing in the agricultural arena: A systematic review of the current status and perspectives. Biotechnol Bioeng 2024; 121:2585-2603. [PMID: 38853643 DOI: 10.1002/bit.28764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
The extensive use of chemical pesticides has significantly boosted agricultural food crop yields. Nevertheless, their excessive and unregulated application has resulted in food contamination and pollution in environmental, aquatic, and agricultural ecosystems. Consequently, the on-site monitoring of pesticide residues in agricultural practices is paramount to safeguard global food and conservational safety. Traditional pesticide detection methods are cumbersome and ill-suited for on-site pesticide finding. The systematic review provides an in-depth analysis of the current status and perspectives of nanobiosensors (NBS) for pesticide detection in the agricultural arena. Furthermore, the study encompasses the fundamental principles of NBS, the various transduction mechanisms employed, and their incorporation into on-site detection platforms. Conversely, the assortment of transduction mechanisms, including optical, electrochemical, and piezoelectric tactics, is deliberated in detail, emphasizing its advantages and limitations in pesticide perception. Incorporating NBS into on-site detection platforms confirms a vital feature of their pertinence. The evaluation reflects the integration of NBS into lab-on-a-chip systems, handheld devices, and wireless sensor networks, permitting real-time monitoring and data-driven decision-making in agronomic settings. The potential for robotics and automation in pesticide detection is also scrutinized, highlighting their role in improving competence and accuracy. Finally, this systematic review provides a complete understanding of the current landscape of NBS for on-site pesticide sensing. Consequently, we anticipate that this review offers valuable insights that could form the foundation for creating innovative NBS applicable in various fields such as materials science, nanoscience, food technology and environmental science.
Collapse
Affiliation(s)
- Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
- Research Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Devarajan Raajasubramanian
- Department of Botany, Faculty of Science, Annamalai University, Annamalainagar, India
- Department of Botany, Thiru. A. Govindasamy Government Arts College, Tindivanam, India
| | - Natarajan Ashokkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Veerasamy Vinothkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | | | - Palanisamy Selvaraj
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Ambothi Kanagalakshimi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
- Research Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Kuppan Narendra
- Department of Botany, Faculty of Science, Annamalai University, Annamalainagar, India
| | | | - Raju Murali
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
- Research Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| |
Collapse
|
3
|
Weng P, Li C, Liu Q, Tang Z, Zhou Z, Chen S, Hao Y, Xu M. A ternary nucleotide-lanthanide coordination nanoprobe for ratiometric fluorescence detection of ciprofloxacin. LUMINESCENCE 2024; 39:e4667. [PMID: 38178733 DOI: 10.1002/bio.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ciprofloxacin (CIP) is a widely used broad-spectrum antibiotic and has been associated with various side effects, making its accurate detection crucial for patient safety, drug quality compliance, and environmental and food safety. This study presents the development of a ternary nucleotide-lanthanide coordination nanoprobe, GMP-Tb-BDC (GMP: guanosine 5'-monophosphate, BDC: 2-amino-1,4-benzenedicarboxylic acid), for the sensitive and ratiometric detection of CIP. The GMP-Tb-BDC nanoprobe was constructed by incorporating the blue-emissive ligand BDC into the Tb/GMP coordination polymers. Upon the addition of CIP, the fluorescence of terbium ion (Tb3+ ) was significantly enhanced due to the coordination and fluorescence sensitization properties of CIP, while the emission of the BDC ligand remained unchanged. The nanoprobe demonstrated good linearity in the concentration range of 0-10 μM CIP. By leveraging mobile phone software to analyze the color signals, rapid on-site analysis of CIP was achieved. Furthermore, the nanoprobe exhibited accurate analysis of CIP in actual drug and milk samples. This study showcases the potential of the GMP-Tb-BDC nanoprobe for practical applications in CIP detection.
Collapse
Affiliation(s)
- Pei Weng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
4
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
5
|
Feng T, Kang Z, Yan S, Huang Y, Liu R. A novel fluorescent aptasensor for the detection of theophylline based on cryonase-driven signal amplification strategy. LUMINESCENCE 2023. [PMID: 38148177 DOI: 10.1002/bio.4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
In the study, we have developed an expedient and efficient method for the detection of theophylline based on the amplification of the signal intensity of fluorescence based on oxidized single-walled carbon nanohorns (oxSWCNHs)/cryonase. When theophylline was not present in the system, oxSWCNHs can adequately adsorb nucleic acid probes labeled by carboxyfluorescein (FAM). In the presence of theophylline, the nucleic acid probe forms the tertiary probe-theophylline complex, which detaches from the surface of the oxSWCNHs. Then, upon reaction with cryonase, the complex can release the FAM and theophylline into the next cycle. The fluorescence signal of the system exhibits a 1:N magnification, enabling quantitative detection of theophylline. The linear range was 30-150 ng/mL, and the limit of detection (LOD) was 6.04 ng/mL. At the same time, it can also be used to detect theophylline in mouse serum.
Collapse
Affiliation(s)
- Tingting Feng
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhechen Kang
- Second Clinical Medical College, Hainan Medical University, Haikou, China
| | - Shuzhu Yan
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yu Huang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Rui Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|