1
|
Yakimov AS, Denisov IA, Bukatin AS, Lukyanenko KA, Belousov KI, Kukhtevich IV, Esimbekova EN, Evstrapov AA, Belobrov PI. Droplet Microfluidic Device for Chemoenzymatic Sensing. MICROMACHINES 2022; 13:1146. [PMID: 35888963 PMCID: PMC9325247 DOI: 10.3390/mi13071146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The rapid detection of pollutants in water can be performed with enzymatic probes, the catalytic light-emitting activity of which decreases in the presence of many types of pollutants. Herein, we present a microfluidic system for continuous chemoenzymatic biosensing that generates emulsion droplets containing two enzymes of the bacterial bioluminescent system (luciferase and NAD(P)H:FMN-oxidoreductase) with substrates required for the reaction. The developed chip generates "water-in-oil" emulsion droplets with a volume of 0.1 μL and a frequency of up to 12 drops per minute as well as provides the efficient mixing of reagents in droplets and their distancing. The bioluminescent signal from each individual droplet was measured by a photomultiplier tube with a signal-to-noise ratio of up to 3000/1. The intensity of the luminescence depended on the concentration of the copper sulfate with the limit of its detection of 5 μM. It was shown that bioluminescent enzymatic reactions could be carried out in droplet reactors in dispersed streams. The parameters and limitations required for the bioluminescent reaction to proceed were also studied. Hereby, chemoenzymatic sensing capabilities powered by a droplet microfluidics manipulation technique may serve as the basis for early-warning online water pollution systems.
Collapse
Affiliation(s)
- Anton S. Yakimov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Ivan A. Denisov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Laboratory of Bioluminescent Biotechnologies, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Anton S. Bukatin
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint Petersburg, Russia; (A.S.B.); (K.I.B.)
- Institute for Analytical Instrumentation RAS, 194021 Saint Petersburg, Russia;
| | - Kirill A. Lukyanenko
- Laboratory of Bioluminescent Biotechnologies, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Kirill I. Belousov
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint Petersburg, Russia; (A.S.B.); (K.I.B.)
| | - Igor V. Kukhtevich
- Institute of Silicate Chemistry of RAS, 199034 Saint Petersburg, Russia;
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena N. Esimbekova
- Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russia;
- Department of Biophysics, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | | | - Peter I. Belobrov
- Department of Biophysics, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
2
|
Esimbekova EN, Torgashina IG, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Adnan NA, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Shukor MYA. Statistical Modeling for the Optimization of Bioluminescence Production by Newly Isolated Photobacterium sp. NAA-MIE. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION B: BIOLOGICAL SCIENCES 2020; 90:797-810. [DOI: 10.1007/s40011-019-01154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 09/02/2023]
|
4
|
Pesticide Residues Identification by Optical Spectrum in the Time-Sequence of Enzyme Inhibitors Performed on Microfluidic Paper-Based Analytical Devices (µPADs). Molecules 2019; 24:molecules24132428. [PMID: 31269660 PMCID: PMC6651370 DOI: 10.3390/molecules24132428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Pesticides vary in the level of poisonousness, while a conventional rapid test card only provides a general “absence or not” solution, which cannot identify the various genera of pesticides. In order to solve this problem, we proposed a seven-layer paper-based microfluidic chip, integrating the enzyme acetylcholinesterase (AChE) and chromogenic reaction. It enables on-chip pesticide identification via a reflected light intensity spectrum in time-sequence according to the different reaction efficiencies of pesticide molecules and assures the optimum temperature for enzyme activity. After pretreatment of figures of reflected light intensity during the 15 min period, the figures mainly focused on the reflected light variations aroused by the enzyme inhibition assay, and thus, the linear discriminant analysis showed satisfying discrimination of imidacloprid (Y = −1.6525X − 139.7500), phorate (Y = −3.9689X − 483.0526), and avermectin (Y = −2.3617X − 28.3082). The correlation coefficients for these linearity curves were 0.9635, 0.8093, and 0.9094, respectively, with a 95% limit of agreement. Then, the avermectin class chemicals and real-world samples (i.e., lettuce and rice) were tested, which all showed feasible graphic results to distinguish all the chemicals. Therefore, it is feasible to distinguish the three tested kinds of pesticides by the changes in the reflected light spectrum in each min (15 min) via the proposed chip with a high level of automation and integration.
Collapse
|
5
|
Yang N, Wang P, Xue C, Sun J, Mao H, Oppong PK. A portable detection method for organophosphorus and carbamates pesticide residues based on multilayer paper chip. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ning Yang
- School of Electrical and Information EngineeringJiangsu University Zhenjiang China
- Agriculture Equipment Engineering Institute, Jiangsu University Zhenjiang China
| | - Pan Wang
- School of Electrical and Information EngineeringJiangsu University Zhenjiang China
- Research Center of Fluid Machinery Engineering and TechnologyJiangsu University Zhenjiang China
| | - Chun‐Yang Xue
- School of Electrical and Information EngineeringJiangsu University Zhenjiang China
| | - Jun Sun
- School of Electrical and Information EngineeringJiangsu University Zhenjiang China
| | - Han‐Ping Mao
- Agriculture Equipment Engineering Institute, Jiangsu University Zhenjiang China
| | - Paul Kwabena Oppong
- Agriculture Equipment Engineering Institute, Jiangsu University Zhenjiang China
| |
Collapse
|
6
|
Denisov I, Lukyanenko K, Yakimov A, Kukhtevich I, Esimbekova E, Belobrov P. Disposable luciferase-based microfluidic chip for rapid assay of water pollution. LUMINESCENCE 2018; 33:1054-1061. [DOI: 10.1002/bio.3508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Elena Esimbekova
- Siberian Federal University; Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center'Krasnoyarsk Science Center SB RAS’; Krasnoyarsk Russia
| | | |
Collapse
|
7
|
Belousov KI, Denisov IA, Lukyanenko KA, Yakimov AS, Bukatin AS, Kukhtevich IV, Sorokin VV, Esimbekova EN, Belobrov PI, Evstrapov AA. Dissolution and mixing of flavin mononucleotide in microfluidic chips for bioassay. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1742-6596/741/1/012058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Zhao X, Dong T. Measurement and analysis of Vibrio fischeri cell-based microfluidic device for personal health monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:2433-6. [PMID: 24110218 DOI: 10.1109/embc.2013.6610031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cell-based microfluidic chip was designed and fabricated as a low-cost detector to continuously monitor toxicants in drinking water or human urine samples, which is expected to be an important component of a household health monitoring system in the future. The bioluminescent bacterium, Vibrio Fischeri, was selected to validate the function of device. Water samples and Vibrio fischeri cells were mixed and encapsulated into droplets in air flow, which can guarantee sufficient oxygen supply for cells in droplets. Preliminary tests were performed using copper ion (Cu(2+)) as the model toxicant. The droplet system was measured and analyzed at various flow rates in different observation chambers. Both deionized water and human urine samples were tested in the cell-based device. Interestingly, a strong relation between the R.L.U. (Relative Luminescence Units) in the observation chamber and the minute concentration of toxicant (Cu(2+)) was found using deionized water as solvent, whereas the relation was insignificant using human urine as solvent. This study showed the Vibrio fischeri cell-based device might be reliably employed as an early-warning system for the safety of drinking water. However, Vibrio fischeri is not competent to detect dangerous materials in a complex biofluid. With the replacement of cell sensors, the microfluidic device might be functional to analyze urine samples in theory.
Collapse
|
9
|
Esimbekova EN, Lonshakova-Mukina VI, Bezrukikh AE, Kratasyuk VA. Design of multicomponent reagents for enzymatic assays. DOKL BIOCHEM BIOPHYS 2015; 461:102-5. [PMID: 25937225 DOI: 10.1134/s1607672915020106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 11/23/2022]
Affiliation(s)
- E N Esimbekova
- Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russia,
| | | | | | | |
Collapse
|
10
|
Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria NADH:FMN–oxidoreductase–luciferase. Anal Bioanal Chem 2014; 406:5743-7. [DOI: 10.1007/s00216-014-7987-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
11
|
Application of enzyme bioluminescence in ecology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:67-109. [PMID: 25084995 DOI: 10.1007/978-3-662-43385-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
: This review examines the general principles of bioluminescent enzymatic toxicity bioassays and describes the applications of these methods and the implementation in commercial biosensors. Bioluminescent enzyme system technology (BEST) has been proposed in the bacterial coupled enzyme system, wherein NADH:FMN-oxidoreductase-luciferase substitutes for living organisms. BEST was introduced to facilitate and accelerate the development of cost-competitive enzymatic systems for use in biosensors for medical, environmental, and industrial applications. For widespread use of BEST, the multicomponent reagent "Enzymolum" has been developed, which contains the bacterial luciferase, NADH:FMN-oxidoreductase, and their substrates, co-immobilized in starch or gelatin gel. Enzymolum is the central part of Portable Laboratory for Toxicity Detection (PLTD), which consists of a biodetector module, a sampling module, a sample preparation module, and a reagent module. PLTD instantly signals chemical-biological hazards and allows us to detect a wide range of toxic substances. Enzymolum can be integrated as a biological module into the portable biodetector-biosensor originally constructed for personal use. Based on the example of Enzymolum and the algorithm for creating new enzyme biotests with tailored characteristics, a new approach was demonstrated in biotechnological design and construction. The examples of biotechnological design of various bioluminescent methods for ecological monitoring were provided. Possible applications of enzyme bioassays are seen in the examples for medical diagnostics, assessment of the effect of physical load on sportsmen, analysis of food additives, and in practical courses for higher educational institutions and schools. The advantages of enzymatic assays are their rapidity (the period of time required does not exceed 3-5 min), high sensitivity, simplicity and safety of procedure, and possibility of automation of ecological monitoring; the required luminometer is easily available.
Collapse
|
12
|
Esimbekova EN, Kondik AM, Kratasyuk VA. Bioluminescent enzymatic rapid assay of water integral toxicity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:5909-5916. [PMID: 23151839 DOI: 10.1007/s10661-012-2994-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
A bioluminescent rapid method was developed to estimate the integral toxicity of natural and wastewater. This method is based on registering the effect of the polluted water sample on the parameters of the bioluminescent reaction catalyzed by the multi-component reagent containing NADH:FMN oxidoreductase, luciferase, and their substrates co-immobilized in a starch carrier. Several ways to increase the method's sensitivity to toxic substances were suggested; conditions were selected to make it possible to determine, with maximum efficiency, the content of toxic substances corresponding to a certain maximum permissible concentration. The sensitivity of soluble and immobilized coupled enzymatic systems to a series of organic pollutants (phenols, quinones, and salts of heavy metals) was compared. It was shown that the reagent is the most sensitive to the effect of phenols and quinones. The method was tested during analysis of the wastewater from a pulp and paper plant and can be used for biotesting in both laboratory and field conditions.
Collapse
Affiliation(s)
- E N Esimbekova
- Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russia.
| | | | | |
Collapse
|
13
|
Ranjan R, Rastogi NK, Thakur MS. Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide. JOURNAL OF HAZARDOUS MATERIALS 2012; 225-226:114-123. [PMID: 22626628 DOI: 10.1016/j.jhazmat.2012.04.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/10/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
The present communication deals with construction of immobilized robust biophotonic bead using P. leiognathi, a marine luminescent bacterium for their possible application in monitoring of environmental toxicants. Immobilization efficiency of agar, carrageenan and sodium alginate was evaluated separately in terms of luminescence response and was recorded as 30.3, 77.4 or 99.5%, respectively. Under optimized storage conditions, the luminescent response of P. leiognathi in the immobilized state was studied over a period of 30 days. These biophotonic beads were further used as a rapid and reliable optical biosensing tool for the detection of heavy metals [Hg(II), As(V) or Cd(II)] and pesticide [2,4-dichlorophenoxyacetic acid (2,4-D)] in water systems. The concentration range for the detection of Hg(II), As(V), Cd(II) and 2,4-D was 2-32ppm, 4-128ppm, 16-512ppm and 100-600ppm, respectively, while corresponding sensitivity threshold was 2.0ppm, 4.0ppm, 16.0ppm and 100ppm. A comparison of inhibition constant (K(d)) (or EC(20)) values indicated that the sensitivity thresholds rank as Hg(II)>As(V)>Cd(II)>2,4-D. Moreover, the time taken for the detection of heavy metals and pesticide was less than 30min. Using the bioluminescence inhibition method, the concentration of heavy metals and pesticide could be predicted.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Fermentation Technology and Bioengineering Department, Central Food Technological Research Institute, Mysore 570020, India
| | | | | |
Collapse
|
14
|
Kratasyuk V, Esimbekova E, Correll M, Bucklin R. Bioluminescent enzyme assay for the indication of plant stress in enclosed life support systems. LUMINESCENCE 2011; 26:543-6. [PMID: 22162458 DOI: 10.1002/bio.1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/20/2010] [Accepted: 10/29/2010] [Indexed: 11/08/2022]
Abstract
The application of bioluminescent sensors for monitoring key metabolites and enzymes that are indicators of stress in plants is demonstrated. The sensitivity of bioluminescent assay for NAD(P)H and NAD(P)(+) was about 0.5 and 1 nmol, respectively. The levels of NAD(P)H and NAD(P)(+) in radish (Raphanus sativus) root extracts from controls and from stress-induced conditions were compared. To induce environmental stress, the plants were grown in enclosed environmental chambers with low pressure (9 or 32 kPa), high humidity (>80%) and low oxygen partial pressure (down to 3.3-6.5 kPa). The concentrations of NAD(P)(+) and NAD(P)H in plants varied under stress conditions. Decreasing both total pressure from 101.5 to 32 or 9 kPa and partial pressure of oxygen increased the ratio of NAD(P)(+) /NAD(P)H from 0.2 to 4 or 6, respectively. The increase in this ratio suggests that plants are undergoing stress in these hypobaric environments. The developed bioluminescent assay for quantification of pyridine nucleotides in plant tissues is rapid, low-cost and easily performed.
Collapse
|
15
|
Rozhko T, Bondareva L, Mogilnaya O, Vydryakova G, Bolsunovsky A, Stom D, Kudryasheva N. Detoxification of AM-241 solutions by humic substances: bioluminescent monitoring. Anal Bioanal Chem 2010; 400:329-34. [DOI: 10.1007/s00216-010-4442-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/29/2010] [Accepted: 11/12/2010] [Indexed: 11/29/2022]
|
16
|
Chen J, Duan C, Guan Y. Sorptive extraction techniques in sample preparation for organophosphorus pesticides in complex matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1216-25. [DOI: 10.1016/j.jchromb.2010.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/25/2010] [Accepted: 02/27/2010] [Indexed: 10/19/2022]
|
17
|
Vetrova EV, Kudryasheva NS, Cheng KH. Effect of quinone on the fluorescence decay dynamics of endogenous flavin bound to bacterial luciferase. Biophys Chem 2009; 141:59-65. [PMID: 19162392 DOI: 10.1016/j.bpc.2008.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 12/21/2008] [Indexed: 11/29/2022]
Abstract
The interaction of quinone with luciferase from Photobacterium leiognathi was studied based on the fluorescence decay measurements of the endogenous flavin bound to the enzyme. Homologous 1,4-quinones, 1,4-benzoquinone, methyl-1,4-benzoquinone, 2-methyl-5-isopropyl-1,4-benzoquine and 1,4-naphthoquinone, were investigated. In the absence of quinone, the fluorescence intensity and anisotropy decays of the endogenous flavin exhibited two intensity decay lifetimes (~1 and 5 ns) and two anisotropy decay lifetimes (~0.2 and 20 ns), suggesting a heterogeneous quenching and a rotational mobility microenvironment of the active site of the luciferase, respectively. In the presence of quinone, the intensity decay heterogeneity was largely maintained, whereas the fraction of the short anisotropy decay component and the averaged rotational rate of FMN increased with the increasing hydrophobicity of the quinone. We hypothesize that the hydrophobicity of the quinone plays a role in the non-specific inhibition mechanism of xenobiotic molecules in the bacterial bioluminescence system via altering the rotational mobility of the endogenous flavin in the luciferase.
Collapse
Affiliation(s)
- Elena V Vetrova
- Department of Physics, Texas Tech University, Lubbock, 79409, USA
| | | | | |
Collapse
|
18
|
Kratasyuk V, Esimbekova E. Enzyme-based bioluminescent biosensors for bio-monitoring of environment: Biochemical design and applications. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Girotti S, Ferri EN, Fumo MG, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 2007; 608:2-29. [PMID: 18206990 DOI: 10.1016/j.aca.2007.12.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/06/2007] [Accepted: 12/09/2007] [Indexed: 11/18/2022]
Abstract
This review deals with the applications of bioluminescent bacteria to the environmental analyses, published during the years 2000-2007. The ecotoxicological assessment, by bioassays, of the environmental risks and the luminescent approaches are reported. The review includes a brief introduction to the characteristics and applications of bioassays, a description of the characteristics and applications of natural bioluminescent bacteria (BLB), and a collection of the main applications to organic and inorganic pollutants. The light-emitting genetically modified bacteria applications, as well as the bioluminescent immobilized systems and biosensors are outlined. Considerations about commercially available BLB and BLB catalogues are also reported. Most of the environmental applications, here mentioned, of luminescent organisms are on wastewater, seawater, surface and ground water, tap water, soil and sediments, air. Comparison to other bioindicators and bioassay has been also made. Various tables have been inserted, to make easier to take a rapid glance at all possible references concerning the topic of specific interest.
Collapse
Affiliation(s)
- Stefano Girotti
- Department of Metallurgic Science, Electrochemistry and Chemical Techniques, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy.
| | | | | | | |
Collapse
|