1
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
2
|
Yang YJ, Kim MJ, Yang JH, Heo JW, Kim HH, Kim WH, Kim GS, Lee HJ, Kim YW, Kim KY, Park KI. Liquid Chromatography/Tandem Mass Spectrometry Analysis of Sophora flavescens Aiton and Protective Effects against Alcohol-Induced Liver Injury and Oxidative Stress in Mice. Antioxidants (Basel) 2024; 13:541. [PMID: 38790646 PMCID: PMC11117756 DOI: 10.3390/antiox13050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a Lieber-DeCarli liquid diet, including ethanol. The alcoholic fatty liver disease mice were orally administered ESF (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day), which served as a positive control every day for 16 days. The findings suggest that ESF enhances hepatoprotective benefits by significantly decreasing serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), markers for liver injury. Furthermore, ESF alleviated the accumulation of triglyceride (TG) and total cholesterol (TC), increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), and improved serum alcohol dehydrogenase (ADH) activity in the alcoholic fatty liver disease mice model. Cells and organisms rely on the Kelch-like ECH-associated protein 1- Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system as a critical defensive mechanism in response to oxidative stress. Therefore, Nrf2 plays an important role in ALD antioxidant responses, and its level is decreased by increased reactive oxidation stress (ROS) in the liver. ESF increased Nrf2, which was decreased in ethanol-damaged livers. Additionally, four polyphenol compounds were identified through a qualitative analysis of the ESF using LC-MS/MS. This study confirmed ESF's antioxidative and hangover-elimination effects and suggested the possibility of using Sophora flavescens Aiton (SF) to treat ALD.
Collapse
Affiliation(s)
- Ye Jin Yang
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Jung Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ji Woong Heo
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hun Hwan Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Woo H. Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Gon Sup Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hu-Jang Lee
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Kwang Youn Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Kwang Il Park
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| |
Collapse
|
3
|
Chang TY, Lin MS, Chen CC, Leu YL, Wang SH. Isoxanthohumol reduces neointimal hyperplasia through the apelin/AKT pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167099. [PMID: 38428686 DOI: 10.1016/j.bbadis.2024.167099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Tang Z, Feng Y, Nie W, Li C. Xanthohumol attenuates renal ischemia/reperfusion injury by inhibiting ferroptosis. Exp Ther Med 2023; 26:571. [PMID: 37954118 PMCID: PMC10632967 DOI: 10.3892/etm.2023.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 11/14/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a notable contributor to kidney injury, but effective prevention and treatment options are limited. The present study aimed to evaluate the impact of xanthohumol (XN), a kind of flavonoid, on renal IRI and its pathological process in rats. Rats and HK-2 cells were divided into five groups: Sham (control), IR [hypoxia-reoxygenation (HR)], IR (HR) + XN, IR (HR) + erastin or IR (HR) + XN + erastin. The effects of XN and erastin (a ferroptosis inducer) on IRI in rats were evaluated using blood urea nitrogen, plasma creatinine, glutathione, superoxide dismutase and malondialdehyde kits, western blotting, cell viability assay, hematoxylin and eosin staining and reactive oxygen species (ROS) detection. Nrf2 small interfering (si)RNA was used to investigate the role of the Nrf2/heme oxygenase (HO)-1 axis in XN-mediated protection against HR injury. Cell viability, ROS levels and expression of ferroptosis-related proteins were analyzed. Following IR, renal function of rats was severely impaired and oxidative stress and ferroptosis levels significantly increased. However, XN treatment decreased renal injury and inhibited oxidative stress and ferroptosis in renal tubular epithelial cells. Additionally, XN upregulated the Nrf2/HO-1 signaling pathway and Nrf2-siRNA reversed the renoprotective effect of XN. XN effectively decreased renal IRI by inhibiting ferroptosis and oxidative stress and its protective mechanism may be associated with the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Urology, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Ye Feng
- Department of Urology, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Wen Nie
- Department of Training Injury Prevention and Treatment, Wuhan Armed Police Special Service Rehabilitation Center, Wuhan, Hubei 430074, P.R. China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
5
|
Tirado-Kulieva VA, Hernández-Martínez E, Minchán-Velayarce HH, Pasapera-Campos SE, Luque-Vilca OM. A comprehensive review of the benefits of drinking craft beer: Role of phenolic content in health and possible potential of the alcoholic fraction. Curr Res Food Sci 2023; 6:100477. [PMID: 36935850 PMCID: PMC10020662 DOI: 10.1016/j.crfs.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
Currently, there is greater production and consumption of craft beer due to its appreciated sensory characteristics. Unlike conventional beer, craft beers provide better health benefits due to their varied and high content of phenolic compounds (PCs) and also due to their alcohol content, but the latter is controversial. The purpose of this paper was to report on the alcoholic fraction and PCs present in craft beers and their influence on health. Despite the craft beer boom, there are few studies on the topic; there is a lot of field to explore. The countries with the most research are the United States > Italy > Brazil > United Kingdom > Spain. The type and amount of PCs in craft beers depends on the ingredients and strains used, as well as the brewing process. It was determined that it is healthier to be a moderate consumer of alcohol than to be a teetotaler or heavy drinker. Thus, studies in vitro, with animal models and clinical trials on cardiovascular and neurodegenerative diseases, cancer, diabetes and obesity, osteoporosis and even the immune system suggest the consumption of craft beer. However, more studies with more robust designs are required to obtain more generalizable and conclusive results. Finally, some challenges in the production of craft beer were detailed and some alternative solutions were mentioned.
Collapse
|
6
|
Han Y, Zhang X, Kang Y, Gao Y, Li X, Qi R, Cai R, Qi Y. Sophoraflavanone M, a prenylated flavonoid from Sophora flavescens Ait., suppresses pro-inflammatory mediators through both NF-κB and JNK/AP-1 signaling pathways in LPS-primed macrophages. Eur J Pharmacol 2021; 907:174246. [PMID: 34118222 DOI: 10.1016/j.ejphar.2021.174246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022]
Abstract
(2R)-3α,7,4'-trihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone is a prenylated flavonoid isolated from the anti-inflammatory herb Sophora flavescens Ait. We firstly named it sophoraflavanone M (SFM) in accordance with trivial names of related constitutes from this plant. Although various studies investigated the anti-inflammatory properties of prenylated flavonoids from Sophora flavescens Ait., that of SFM remains unclear and is yet to be determined. In the current study, we assessed the anti-inflammatory effects of SFM in LPS-induced in vivo and in vitro models. In the serum of endotoxemia mice, SFM significantly suppressed LPS-elevated inflammatory cytokines. Furthermore, at nontoxic concentrations, SFM reduced LPS-induced production of inflammatory mediators NO, IL-6, TNF-α, and MCP-1 in mouse primary peritoneal macrophages. Accordingly, in LPS-primed RAW264.7 cell line, it also inhibited these mediators' expression at both transcriptional and translational levels without cytotoxicity. Mechanistically, SFM is found to concurrently inhibit two important inflammatory signaling pathways, NF-κB and JNK/AP-1. SFM restrained phosphorylation and degradation of IκBα as well as the subsequent p65 translocation to dampen NF-κB activity. Meanwhile, it also suppressed JNK phosphorylation to inhibit the transcriptional activity of AP-1. These results provide material basis for traditional application of the anti-inflammatory herb Sophora flavescens Ait. and suggest SFM is a promising natural candidate for alleviating inflammatory conditions.
Collapse
Affiliation(s)
- Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Kang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Exploring the Pharmacological Mechanisms of Tripterygium wilfordii Hook F against Cardiovascular Disease Using Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5575621. [PMID: 34435046 PMCID: PMC8382521 DOI: 10.1155/2021/5575621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Background Tripterygium wilfordii Hook F (TwHF) has been used in traditional Chinese medicine (TCM) for treating cardiovascular disease (CVD). However, the underlying pharmacological mechanisms of the effects of TwHF on CVD remain elusive. This study revealed the pharmacological mechanisms of TwHF acting on CVD based on a pharmacology approach. Materials and Methods The active compounds were selected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database according to the absorption, distribution, metabolism, and excretion (ADME). The potential targets of TwHF were obtained from the SwissTargetPrediction database. The CVD-related therapeutic targets were collected from the DrugBank, the GeneCards database, and the OMIM database. Protein–protein interaction (PPI) network was generated by the STITCH database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by R package. The network of drug-targets-diseases-pathways was constructed by the Cytoscape software. Results The 41 effective ingredients of TwHF and the 178 common targets of TwHF and CVD-related were collected. Furthermore, AKT1, amyloid precursor protein (APP), mitogen-activated protein kinase 1 (MAPK), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA), and cellular tumor antigen p53 (TP53) were identified as the core targets involved in the mechanism of TwHF on CVD. Top ten GO (biological processes, cellular components, and molecular functions) and KEGG pathways were screened with a P value ≤0.01. Finally, we constructed the network of TwHF-targets-CVD-GO-KEGG. Conclusions These findings demonstrate that the main active compound of TwHF, the core targets, and pathways maybe provide new insights into the development of a natural therapy for the prevention and treatment of CVD.
Collapse
|
8
|
Wen L, Zhou T, Jiang Y, Chang SK, Yang B. Prenylated flavonoids in foods and their applications on cancer prevention. Crit Rev Food Sci Nutr 2021; 62:5067-5080. [PMID: 33543993 DOI: 10.1080/10408398.2021.1881437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Functional foods play an important role in health care and chronic diseases prevention, particularly cancer. Prenylated flavonoids are presented in many food resources. They are recognized as neutraceuticals due to their diverse health benefits. Up to now, more than 1000 prenylated flavonoids have been identified in plants. Their food resources are reviewed in this paper. Due to the good safety and cancer prevention effect of prenylated flavonoids, this paper reviews the cancer prevention activities and mechanisms reported in last decade. The structure-activity relationship is discussed. Due to the limited availability in nature, the heterologously biosynthetic technique of prenylated flavonoids is discussed in this review. Inclusion of dietary prenylated flavonoids into human diet is highly desirable. This paper combines the up-to-date information and give a clear image regarding prenylated flavonoids as neutraceuticals.
Collapse
Affiliation(s)
- Lingrong Wen
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Zhou
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Department of Horticulture, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.,Department of Horticulture, University of Chinese Academy of Sciences, Beijing, China
| | - Sui Kiat Chang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Yang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.,Department of Horticulture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Humulus lupulus L. as a Natural Source of Functional Biomolecules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hops (Humulus lupulus L.) are used traditionally in the brewing industry to confer bitterness, aroma, and flavor to beer. However, in recent years, it has been reported that female inflorescences contain a huge variety of bioactive compounds. Due to the growing interest of the consumers by natural ingredients, intense research has been carried out in the last years to find new sources of functional molecules. This review collects the works about the bioactive potential of hops with applications in the food, pharmaceutical, or cosmetic industries. Moreover, an overview of the main extraction technologies to recover biomolecules from hops is shown. Bioactivities of hop extracts such as antibacterial, antifungal, cardioprotective, antioxidant, anti-inflammatory, anticarcinogenic, and antiviral are also summarized. It can be concluded that hops present a high potential of bioactive ingredients with high quality that can be used as preservative agents in fresh foods, extending their shelf life, and they can be incorporated in cosmetic formulation for skincare as well.
Collapse
|
10
|
Osorio-Paz I, Brunauer R, Alavez S. Beer and its non-alcoholic compounds in health and disease. Crit Rev Food Sci Nutr 2019; 60:3492-3505. [PMID: 31782326 DOI: 10.1080/10408398.2019.1696278] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate alcohol consumption has been associated with beneficial effects on human health. Specifically, consumption of red wine and beer has shown a J-shape relation with many important diseases. While a role of ethanol cannot be excluded, the high content of polyphenols in both beverages has been proposed to contribute to these effects, with beer having the advantage over wine that it is lower in alcohol. In addition to ethanol, beer contains a wide variety of compounds with known medicinal potential such as kaempferol, quercetin, tyrosol and phenolic acids, and it is the main dietary source for the flavones xanthohumol and 8-prenylnaringenin, and bitter acids such as humulones and lupulones. Clinical and pre-clinical evidence for the protective effects of moderate beer consumption against cardiovascular disease and other diseases has been accumulating since the 1990s, and the non-alcoholic compounds of beer likely exert most of the observed beneficial effects. In this review, we summarize and discuss the effects of beer consumption in health and disease as well as the clinical potential of its non-alcoholic compounds which may be promising candidates for new therapies against common chronic diseases.
Collapse
Affiliation(s)
- Ixchel Osorio-Paz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| |
Collapse
|
11
|
Krajnović T, Drača D, Kaluđerović GN, Dunđerović D, Mirkov I, Wessjohann LA, Maksimović-Ivanić D, Mijatović S. The hop-derived prenylflavonoid isoxanthohumol inhibits the formation of lung metastasis in B16-F10 murine melanoma model. Food Chem Toxicol 2019; 129:257-268. [PMID: 31034931 DOI: 10.1016/j.fct.2019.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, gained increasing attention as a potential chemopreventive agent. In the present study, IXN antimetastatic potential in vitro against the highly invasive melanoma cell line B16-F10 and in vivo in a murine metastatic model was investigated. Melanoma cell viability was diminished in a dose-dependent manner following the treatment with IXN. This decrease was a consequence of autophagy and caspase-dependent apoptosis. Additionally, the dividing potential of highly proliferative melanoma cells was dramatically affected by this isoflavanone, which was in correlation with an abrogated cell colony forming potential, indicating changes in their metastatic features. Concordantly, IXN promoted strong suppression of the processes that define metastasis- cell adhesion, invasion, and migration. Further investigation at the molecular level revealed that the abolished metastatic potential of a melanoma subclone was due to disrupted integrin signaling. Importantly, these results were reaffirmed in vivo where IXN inhibited the development of lung metastatic foci in tumor-challenged animals. The results of the present study may highlight the beneficial effects of IXN on melanoma as the most aggressive type of skin cancer and will hopefully shed a light on the possible use of this prenylflavonoid in the treatment of metastatic malignancies.
Collapse
Affiliation(s)
- Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Dijana Drača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120, Halle (Saale), Germany.
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, dr Subotića 1, 11000, Belgrade, Serbia.
| | - Ivana Mirkov
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120, Halle (Saale), Germany.
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
12
|
Anti-Remodeling Effects of Xanthohumol-Fortified Beer in Pulmonary Arterial Hypertension Mediated by ERK and AKT Inhibition. Nutrients 2019; 11:nu11030583. [PMID: 30857304 PMCID: PMC6472147 DOI: 10.3390/nu11030583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
Polyphenols present in some alcoholic beverages have been linked to beneficial effects in preventing cardiovascular diseases. Polyphenols found in beer with anti-proliferative and anti-cancer properties are appealing in the context of the quasi-malignant phenotype of pulmonary arterial hypertension (PAH). Our purpose was to evaluate if the chronic ingestion of a xanthohumol-fortified beer (FB) would be able to modulate the pathophysiology of experimental PAH. Male Wistar rats with monocrotaline (MCT)-induced PAH (60 mg/kg) were allowed to drink either xanthohumol-fortified beer (MCT + FB) or 5.2% ethanol (MCT + SHAM) for a period 4 weeks. At the end of the protocol, cardiopulmonary exercise testing and hemodynamic recordings were performed, followed by sample collection for further analysis. FB intake resulted in a significant attenuation of the pulmonary vascular remodeling in MCT + FB animals. This improvement was paralleled with the downregulation in expression of proteins responsible for proliferation (ERK1/2), cell viability (AKT), and apoptosis (BCL-XL). Moreover, MCT + FB animals presented improved right ventricle (RV) function and remodeling accompanied by VEGFR-2 pathway downregulation. The present study demonstrates that a regular consumption of xanthohumol through FB modulates major remodeling pathways activated in experimental PAH.
Collapse
|
13
|
Seliger JM, Misuri L, Maser E, Hintzpeter J. The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J Enzyme Inhib Med Chem 2018; 33:607-614. [PMID: 29532688 PMCID: PMC6010053 DOI: 10.1080/14756366.2018.1437728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023] Open
Abstract
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki = 15.08 μM, 0.34 μM, 0.71 μM) and of human AKR1B10 (Ki = 20.11 μM, 2.25 μM, 1.95 μM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure?activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.
Collapse
Affiliation(s)
- Jan Moritz Seliger
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Livia Misuri
- Department of Biology, Tuscany Region PhD School in Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
14
|
Mijatović S, Bramanti A, Nicoletti F, Fagone P, Kaluđerović GN, Maksimović-Ivanić D. Naturally occurring compounds in differentiation based therapy of cancer. Biotechnol Adv 2018; 36:1622-1632. [DOI: 10.1016/j.biotechadv.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
|
15
|
Luís C, Costa R, Rodrigues I, Castela Â, Coelho P, Guerreiro S, Gomes J, Reis C, Soares R. Xanthohumol and 8-prenylnaringenin reduce type 2 diabetes-associated oxidative stress by downregulating galectin-3. Porto Biomed J 2018; 4:e23. [PMID: 31595252 PMCID: PMC6750249 DOI: 10.1016/j.pbj.0000000000000023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Background Galectin-3 (Gal3) expression is associated with accumulation of Advanced Glycation End products (AGE), a common feature in diabetes mellitus (DM). The role of Gal3 in oxidative stress is, however, controversial, being considered in the literature to play either a protective role or exacerbating disease. Methods Herein, we examined the interplay between Gal3 and oxidative stress in a high-fat diet -induced type 2 DMC57Bl/6 mice model. Because natural polyphenols are known to play antioxidant and anti-inflammatory roles and to modulate metabolic activity, we further evaluated the effect of xanthohumol and 8-prenylnaringenin polyphenols in this crosstalk. Results Gal3 expression was accompanied by 3-nitrotyrosine and AGE production in liver and kidney of diabetic mice compared to healthy animals (fed with standard diet). Oral supplementation with polyphenols decreased the levels of these oxidative biomarkers as evaluated by immunohistochemistry and western blotting. Interestingly, blocking Gal3 by incubating human microvascular endothelial cells with modified citrus pectin increased 3-nitrotyrosine protein expression. Conclusions These findings imply that Gal3 overexpression is probably controlling oxidative stress in endothelial cells. In conclusion, our results indicate that supplementation with 8-prenylnaringenin or xanthohumol reverses diabetes-associated oxidation in liver and kidney, and consequently decreases this diabetic biomarker that predispose to cardiovascular complications.
Collapse
Affiliation(s)
- Carla Luís
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto
| | - Raquel Costa
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto
| | - Ilda Rodrigues
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine
| | - Ângela Castela
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto
| | - Pedro Coelho
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto.,ESTSP-Escola Superior de Tecnologia da Saúde do Porto
| | - Susana Guerreiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto
| | - Joana Gomes
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto
| | - Celso Reis
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto
| |
Collapse
|
16
|
Prenylflavonoid Isoxanthohumol Sensitizes MCF-7/ADR Cells to Doxorubicin Cytotoxicity via Acting as a Substrate of ABCB1. Toxins (Basel) 2017; 9:toxins9070208. [PMID: 28665335 PMCID: PMC5535155 DOI: 10.3390/toxins9070208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
Isoxanthohumol is a unique prenylflavonoid with the highest content in beer. Isoxanthohumol has multiple bioactivities and has recently received considerable attention in the scientific community. Nonetheless; its effect on drug resistant cancer cells has rarely been studied. In this paper; we investigated the synergistic effect of isoxanthohumol and doxorubicin on doxorubicin resistant MCF-7/ADR cells. Our results showed that isoxanthohumol sensitized the cytotoxic effect of doxorubicin on MCF-7/ADR cells via increased proliferation inhibition and apoptosis stimulation. Molecular mechanism studies further demonstrated that isoxanthohumol inhibited ABCB1-mediated doxorubicin efflux; stimulated the ATPase activity of ABCB1 (ATP-binding cassette sub-family B member 1); and acted as an ABCB1 substrate. Molecular docking results suggested that isoxanthohumol bound to the central transmembrane domain of ABCB1 and its binding site overlapped with the doxorubicin binding site. The present studies demonstrated that isoxanthohumol was a competitive ABCB1 inhibitor which reversed ABCB1-mediated doxorubicin resistance in MCF-7/ADR cells; and therefore could be further developed to help with overcoming ABCB1-mediated drug resistance.
Collapse
|
17
|
Bidirectional regulation of angiogenesis by phytoestrogens through estrogen receptor-mediated signaling networks. Chin J Nat Med 2017; 14:241-254. [PMID: 27114311 DOI: 10.1016/s1875-5364(16)30024-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Indexed: 01/21/2023]
Abstract
Sex hormone estrogen is one of the most active intrinsic angiogenesis regulators; its therapeutic use has been limited due to its carcinogenic potential. Plant-derived phytoestrogens are attractive alternatives, but reports on their angiogenic activities often lack in-depth analysis and sometimes are controversial. Herein, we report a data-mining study with the existing literature, using IPA system to classify and characterize phytoestrogens based on their angiogenic properties and pharmacological consequences. We found that pro-angiogenic phytoestrogens functioned predominantly as cardiovascular protectors whereas anti-angiogenic phytoestrogens played a role in cancer prevention and therapy. This bidirectional regulation were shown to be target-selective and, for the most part, estrogen-receptor-dependent. The transactivation properties of ERα and ERβ by phytoestrogens were examined in the context of angiogenesis-related gene transcription. ERα and ERβ were shown to signal in opposite ways when complexed with the phytoestrogen for bidirectional regulation of angiogenesis. With ERα, phytoestrogen activated or inhibited transcription of some angiogenesis-related genes, resulting in the promotion of angiogenesis, whereas, with ERβ, phytoestrogen regulated transcription of angiogenesis-related genes, resulting in inhibition of angiogenesis. Therefore, the selectivity of phytoestrogen to ERα and ERβ may be critical in the balance of pro- or anti-angiogenesis process.
Collapse
|
18
|
Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 2016; 32:1171-8. [DOI: 10.1016/j.nut.2016.03.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
19
|
Krajnović T, Kaluđerović GN, Wessjohann LA, Mijatović S, Maksimović-Ivanić D. Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacol Res 2016; 105:62-73. [PMID: 26784390 DOI: 10.1016/j.phrs.2016.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/18/2015] [Accepted: 01/13/2016] [Indexed: 01/19/2023]
Abstract
Isoxanthohumol (IXN), a prenylated flavonoid from hops, exhibits diverse biological activities, e.g. antitumor, antiinflammatory, antioxidant and antiangiogenic. In this study, the effect of IXN is evaluated on two melanoma cell lines with dissimilar molecular background, B16 and A375. The treatment of both cell lines with IXN resulted in dose-dependent decrease of cell viability. Abolished viability was in correlation with changed morphology and loss of dividing potential indicating phenotypical alteration of both tested cell lines. While modified B16 cells underwent the process of non-classic differentiation followed by tyrosinase activity without enhancement of melanin content, inhibition of Notch 1, β-catenin and Oct-3/4 was observed in A375 cells indicating loss of their pluripotent characteristics. In parallel with this, distinct subpopulations in both cell cultures entered the process of programmed cell death-apoptosis in a caspase independent manner. The described changes in cultures upon exposure to IXN could be connected with the suppression of reactive oxygen (ROS) and nitrogen species (RNS) induced by the drug. Despite the differences in which IXN promoted modifications in the upper part of the PI3K/Akt and MEK-ERK signaling pathways between B16 and A375 cells, p70S6K and its target S6 protein in both types of melanoma cells, after transient activation, became inhibited. In addition to direct input of IXN on cell viability, this study for the first time shows that IXN strongly sensitizes melanoma cells to the treatment with paclitaxel in vivo, in concordance with data obtained in vitro on B16 cells as well as their highly invasive F10 subclone.
Collapse
Affiliation(s)
- Tamara Krajnović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D 06120 Halle, Germany.
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D 06120 Halle, Germany.
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
20
|
Grootaert C, Kamiloglu S, Capanoglu E, Van Camp J. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health. Nutrients 2015; 7:9229-55. [PMID: 26569293 PMCID: PMC4663590 DOI: 10.3390/nu7115462] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites.
Collapse
Affiliation(s)
- Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
| | - Senem Kamiloglu
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
| |
Collapse
|
21
|
Isoxanthohumol, a constituent of hop (Humulus lupulus L.), increases stress resistance in Caenorhabditis elegans dependent on the transcription factor DAF-16. Eur J Nutr 2015; 55:257-65. [PMID: 25644181 DOI: 10.1007/s00394-015-0843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/25/2015] [Indexed: 01/27/2023]
Abstract
PURPOSE The flavanone isoxanthohumol (IX) has gained attention as antioxidative and chemopreventive agent, but the molecular mechanism of action remains unclear. We investigated effects of this secondary plant compound in vivo using the model organism Caenorhabditis elegans. METHODS Adult C. elegans nematodes were incubated with IX, and then, the stress resistance was analysed in the SYTOX assay; lifespan was monitored by touch-provoked movement method, the amount of reactive oxygen species (ROS) was measured in the DCF assay, and the nuclear localisation of the transcription factor DAF-16 was analysed by using a transgenic strain. By the use of a DAF-16 loss-of-function strain, we analysed whether the effects are dependent on DAF-16. RESULTS IX increases the resistance of the nematode against thermal stress. Additionally, a reduction in ROS in vivo was caused by IX. Since the flavanone only has a marginal radical-scavenging capacity (TEAC assay), we suggest that IX mediates its antioxidative effects indirectly via activation of DAF-16 (homologue to mammalian FOXO proteins). The nuclear translocation of this transcription factor is increased by IX. In the DAF-16-mutated strain, the IX-mediated increase in stress resistance was completely abolished; furthermore, an increased formation of ROS and a reduced lifespan was mediated by IX. CONCLUSION IX or a bacterial metabolite of IX causes antioxidative effects as well as an increased stress resistance in C. elegans via activation of DAF-16. The homologous pathway may have implications in the molecular mechanism of IX in mammals.
Collapse
|