1
|
de Menezes AAPM, Aguiar RPS, Santos JVO, Sarkar C, Islam MT, Braga AL, Hasan MM, da Silva FCC, Sharifi-Rad J, Dey A, Calina D, Melo-Cavalcante AAC, Sousa JMC. Citrinin as a potential anti-cancer therapy: A comprehensive review. Chem Biol Interact 2023:110561. [PMID: 37230156 DOI: 10.1016/j.cbi.2023.110561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Citrinin (CIT) is a polyketide-derived mycotoxin, which is produced by many fungal strains belonging to the gerena Monascus, Aspergillus, and Penicillium. It has been postulated that mycotoxins have several toxic mechanisms and are potentially used as antineoplastic agents. Therefore, the present study carried out a systematic review, including articles from 1978 to 2022, by collecting evidence in experimental studies of CIT antiplorifactive activity in cancer. The Data indicate that CIT intervenes in important mediators and cell signaling pathways, including MAPKs, ERK1/2, JNK, Bcl-2, BAX, caspases 3,6,7 and 9, p53, p21, PARP cleavage, MDA, reactive oxygen species (ROS) and antioxidant defenses (SOD, CAT, GST and GPX). These factors demonstrate the potential antitumor drug CIT in inducing cell death, reducing DNA repair capacity and inducing cytotoxic and genotoxic effects in cancer cells.
Collapse
Affiliation(s)
- Ag-Anne P M de Menezes
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Raí P S Aguiar
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - José V O Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Muhammad T Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Antonio L Braga
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Mohammad M Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
| | - Felipe C C da Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Ana A C Melo-Cavalcante
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | - João M C Sousa
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
2
|
Nazam N, Jabir NR, Ahmad I, Alharthy SA, Khan MS, Ayub R, Tabrez S. Phenolic Acids-Mediated Regulation of Molecular Targets in Ovarian Cancer: Current Understanding and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:274. [PMID: 37259418 PMCID: PMC9962268 DOI: 10.3390/ph16020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a global health concern with a dynamic rise in occurrence and one of the leading causes of mortality worldwide. Among different types of cancer, ovarian cancer (OC) is the seventh most diagnosed malignant tumor, while among the gynecological malignancies, it ranks third after cervical and uterine cancer and sadly bears the highest mortality and worst prognosis. First-line treatments have included a variety of cytotoxic and synthetic chemotherapeutic medicines, but they have not been particularly effective in extending OC patients' lives and are associated with side effects, recurrence risk, and drug resistance. Hence, a shift from synthetic to phytochemical-based agents is gaining popularity, and researchers are looking into alternative, cost-effective, and safer chemotherapeutic strategies. Lately, studies on the effectiveness of phenolic acids in ovarian cancer have sparked the scientific community's interest because of their high bioavailability, safety profile, lesser side effects, and cost-effectiveness. Yet this is a road less explored and critically analyzed and lacks the credibility of the novel findings. Phenolic acids are a significant class of phytochemicals usually considered in the nonflavonoid category. The current review focused on the anticancer potential of phenolic acids with a special emphasis on chemoprevention and treatment of OC. We tried to summarize results from experimental, epidemiological, and clinical studies unraveling the benefits of various phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid) in chemoprevention and as anticancer agents of clinical significance.
Collapse
Affiliation(s)
- Nazia Nazam
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Nasimudeen R. Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur 613403, Tamil Nadu, India
| | - Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Saif A. Alharthy
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashid Ayub
- Technology and Innovation Unit, Department of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Anwar MM, Laila IMI. Mitigative effect of caffeine against diclofenac-induced hepato-renal damage and chromosomal aberrations in male albino rats. BMC Complement Med Ther 2022; 22:327. [PMID: 36482339 PMCID: PMC9732991 DOI: 10.1186/s12906-022-03802-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Among the most commonly consumed non-steroidal anti-inflammatory drugs (NSAID) is Diclofenac (Dic), especially in low-income countries due to its high efficiency and affordable price. However, the continuous administration of Diclofenac may induce toxic effects on various body organs including the liver and kidney. Caffeine (Caf) (1,3,7-trimethylxanthine) is a pharmacologically active alkaloid type with antioxidant and anti-inflammatory actions. AIM The current study aims to evaluate the ameliorative effect of Caffeine against Dic-induced hepato-renal toxicity and damage. METHODS Twenty-four male albino rats type were assigned randomly into four groups (n = 6): (Group 1): Control group, (Group 2): Six male rats were exposed to Dic 10 mg/kg intraperitoneally (I.P) for 28 days, (Group 3): Six male rats were exposed to Caf (15 mg/kg orally) for 28 days; (Groups 4): Six male rats were exposed to Dic (10 mg/kg, i.p) + Caf (15 mg/kg, orally) for 28 days. Histopathological study and various biological parameters were estimated among the four groups including hemoglobin (Hb%) red blood cells (RBCs), Hematocrit (HT%), total leucocyte count (WBCs), lipid peroxidation (LPO), glutathione peroxidase (GPx), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine, tumor necrosis factor-α (TNF-α), and nitric oxide (NO). RESULTS The administration of Diclofenac resulted in significant deteriorations in the histopathological findings and estimated biological parameters. Whereas, daily Caffeine administration ameliorated Diclofenac-induced toxicity in the kidney and liver by three mechanisms including antioxidant, anti-inflammatory, and DNA damage inhibition. CONCLUSION The current study demonstrated the promising ameliorative and protective effects of Caffeine against Diclofenac-induced hepatic and renal injury.
Collapse
Affiliation(s)
- Mai M. Anwar
- grid.419698.bDepartment of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt ,grid.419698.bNational Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Ibrahim M. Ibrahim Laila
- grid.419698.bDepartment of Biotechnology & Molecular drug evaluation, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
4
|
Farghal HH, Mansour ST, Khattab S, Zhao C, Farag MA. A comprehensive insight on modern green analyses for quality control determination and processing monitoring in coffee and cocoa seeds. Food Chem 2022; 394:133529. [PMID: 35759838 DOI: 10.1016/j.foodchem.2022.133529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Green analysis is defined as the analysis of chemicals in a manner where sample extraction and analysis are performed with least amounts of steps, low hazardous materials, while maintaining efficiency in terms of analytes detection. Coffee and cocoa represent two of the most popular and valued beverages worldwide in addition to their several products i.e., cocoa butter, chocolates. This study presents a comprehensive overview of green methods used to evaluate cocoa and coffee seeds quality compared to other conventional techniques highlighting advantages and or limitations of each. Green techniques discussed in this review include solid phase microextraction, spectroscopic techniques i.e., infra-red (IR) spectroscopy and nuclear magnetic resonance (NMR) besides, e-tongue and e-nose for detection of flavor. The employment of multivariate data analysis in data interpretation is also highlighted in the context of identifying key components pertinent to specific variety, processing method, and or geographical origin.
Collapse
Affiliation(s)
| | - Somaia T Mansour
- Chemistry Department, American University in Cairo, New Cairo, Egypt
| | - Sondos Khattab
- Chemistry Department, American University in Cairo, New Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
5
|
Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3254420. [PMID: 35496060 PMCID: PMC9054433 DOI: 10.1155/2022/3254420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men, and coffee is associated with a reduced risk of developing PCa. Therefore, we aim to review possible coffee molecular mechanisms that contribute to PCa prevention. Coffee has an important antioxidant capacity that reduces oxidative stress, leading to a reduced mutation in cells. Beyond direct antioxidant activity, coffee stimulates phase II enzymatic activity, which is related to the detoxification of reactive metabolites. The anti-inflammatory effects of coffee reduce tissue damage related to PCa development. Coffee induces autophagy, regulates the NF-κB pathway, and reduces the expression of iNOS and inflammatory mediators, such as TNF-α, IL-6, IL-8, and CRP. Also, coffee modulates transcriptional factors and pathways. It has been shown that coffee increases testosterone and reduces sex hormone-binding globulin, estrogen, and prostate-specific antigen. Coffee also enhances insulin resistance and glucose metabolism. All these effects may contribute to protection against PCa development.
Collapse
|
6
|
Sharaf NS, Shetta A, Elhalawani JE, Mamdouh W. Applying Box-Behnken Design for Formulation and Optimization of PLGA-Coffee Nanoparticles and Detecting Enhanced Antioxidant and Anticancer Activities. Polymers (Basel) 2021; 14:144. [PMID: 35012166 PMCID: PMC8747114 DOI: 10.3390/polym14010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
In an attempt to prove biological activity enhancement upon particle size reduction to the nanoscale, coffee (Cf) was chosen to be formulated into poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) using the single emulsion-solvent evaporation (SE-SE) method via Box-Behnken Design (BBD) to study the impact of certain process and formulation parameters on the particle size and size homogeneity, surface stability and encapsulation efficiency (EE%). The coffee-loaded PLGA (PLGA-Cf) NPs were characterized by different methods to aid in selecting the optimum formulation conditions. The desirable physicochemical characteristics involved small particle sizes with an average of 318.60 ± 5.65 nm, uniformly distributed within a narrow range (PDI of 0.074 ± 0.015), with considerable stability (Zeta Potential of -20.50 ± 0.52 mV) and the highest EE% (85.92 ± 4.01%). The antioxidant and anticancer activities of plain PLGA NPs, pure Cf and the optimum PLGA-Cf NPs, were evaluated using 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. As a result of nano-encapsulation, antioxidant activity was enhanced by 26.5%. Encapsulated Cf showed higher anticancer potency than pure Cf against different cancerous cell lines with an increase of 86.78%, 78.17%, 85.84% and 84.84% against MCF-7, A-549, HeLa and HepG-2, respectively. The in vitro release followed the Weibull release model with slow and biphasic release profile in both tested pH media, 7.4 and 5.5.
Collapse
Affiliation(s)
| | | | | | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (N.S.S.); (A.S.); (J.E.E.)
| |
Collapse
|
7
|
Makhija P, Kathuria H, Sethi G, Grobben B. Polymeric Hydrogels for Controlled Release of Black Tea and Coffee Extracts for Topical Applications. Gels 2021; 7:174. [PMID: 34698154 PMCID: PMC8544385 DOI: 10.3390/gels7040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Tea and coffee are popular beverages. Both are also used in topical applications, such as ultraviolet (UV) protection, anti-aging, and wound healing. However, the impact of tea and coffee extract on skin cells is minimally explored. This study investigated the direct exposure of tea and coffee extract on skin cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. It was found that direct exposure of tea and coffee to skin cells can be toxic at a high dose on prolonged exposure (72 h). Therefore, it was hypothesized that a formulation providing a controlled release of tea and coffee could improve their skin compatibility. Thermally cross-linked poly(acrylic acid) hydrogels loaded with tea and coffee extracts (with and without milk) were formulated and optimized. The release profiles of these hydrogels were studied at varying loading efficiency. Milk addition with tea extract retarded the tea extract release from hydrogel while minimally affecting the coffee release. This effect was due to the molecular interaction of tea with milk components, showing changes in size, zeta potential, and polydispersity index. The release study best fitted the Korsmeyer-Peppas release model. Skin cells exposed to tea or coffee-loaded hydrogel showed normal skin cell morphology under fluorescence microscopic analysis. In conclusion, the hydrogels controlled the tea and coffee release and showed biocompatibility with skin cells. It can potentially be used for skin applications.
Collapse
Affiliation(s)
- Pooja Makhija
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore;
- Nusmetic Pvt Ltd., Makerspace, i4 Building, 3 Research Link, Singapore 117602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore 117600, Singapore;
| | - Bert Grobben
- Budding Innovations Pvt Ltd., 06-02 Jellicoe Rd, Singapore 208766, Singapore
| |
Collapse
|
8
|
Jalali A, Dabaghian F, Zarshenas MM. Alkaloids of Peganum harmala: Anticancer Biomarkers with Promising Outcomes. Curr Pharm Des 2021; 27:185-196. [PMID: 33238864 DOI: 10.2174/1381612826666201125103941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious and growing global health issue worldwide. In the cancerous cells, the normal cell cycle has been disrupted via a series of irreversible changes. Recently, the investigations on herbal medicine and clarifying the phytochemicals potential in treat cancer has been increased. The combination of phytochemicals with conventional cancer treatment approaches can improve outcomes via advancing cell death, restraining cell proliferation and invasion, sensitizing cancerous cells, and promoting the immune system. Therefore, phytochemicals can be introduced as relevant complementary medicaments in cancer therapy. Peganum harmala L. (Zygophyllaceae) as a valuable medicinal herb, possesses various alkaloid ingredient. OBJECTIVE Pointing to the importance of new avenues for cancer management and P. harmala convincing effect in this field, this review strived to collect a frame to epitome possible scopes to develop novel medicines in cancer treatment. METHODS Keywords "Peganum harmala" and cancer, or chemotherapy, or anti-neoplasm were searched through the "Scopus" database up to 29th of February 2020. Papers linking to agriculture, chemistry, environmental, and genetics sciences were omitted and, papers centered on cancer were selected. RESULTS AND DISCUSSION In the current study, 42 related papers to cancer treatment and 22 papers on alkaloid bioactive components are collected from 72 papers. The β-carboline alkaloids derived from P. harmala, especially harmine, demonstrate notable anticancer properties by targeting apoptosis, autophagy, abnormal cell proliferation, angiogenesis, metastasis, and cytotoxicity. Based on the collected information, P. harmala holds significant anticancer activity. Considering the mechanism of the various anticancer drugs and their acting similarity to P. harmala, the alkaloids derived from this herb, particularly harmine, can introduce as a novel anticancer medicine solely or in adjuvant cancer therapy.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dabaghian
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Tabrez S, Jabir NR, Adhami VM, Khan MI, Moulay M, Kamal MA, Mukhtar H. Nanoencapsulated dietary polyphenols for cancer prevention and treatment: successes and challenges. Nanomedicine (Lond) 2020; 15:1147-1162. [PMID: 32292109 DOI: 10.2217/nnm-2019-0398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many dietary polyphenols have been investigated for their therapeutic potential either as single agents or in combinations. Despite the significant anticancer potential of these polyphenols in in vitro cell culture and in vivo animal models, their clinical applications have been limited because of challenges such as ineffective systemic delivery, stability and low bioavailability. Nanoencapsulation of these polyphenols could prolong circulation, improve localization, enhance efficacy and reduce the chances of multidrug resistance. This review summarized the use of various polyphenols especially epigallocatechin gallate, quercetin, curcumin and resveratrol as nanoformulations for cancer prevention and treatment. Despite some success, more research is warranted to design a nanoencapsulated combination of polyphenols, effective in in vitro, in vivo and human systems.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research & Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | | | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Moulay
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
10
|
Synthesis and cytotoxic evaluation of hydroxycinnamic acid rhodamine B conjugates. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Islam MT, Biswas S, Bagchi R, Khan MR, Khalipha ABR, Rouf R, Uddin SJ, Shilpi JA, Bardaweel SK, Sabbah DA, Mubarak MS. Ponicidin as a promising anticancer agent: Its biological and biopharmaceutical profile along with a molecular docking study. Biotechnol Appl Biochem 2019; 66:434-444. [DOI: 10.1002/bab.1740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of PharmacyTon Duc Thang University Ho Chi Minh City Vietnam
| | - Sajal Biswas
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Rajat Bagchi
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Md. Roich Khan
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Abul Bashar Ripon Khalipha
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Razina Rouf
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy DisciplineLife Science SchoolKhulna University Khulna Bangladesh
| | - Jamil A. Shilpi
- Pharmacy DisciplineLife Science SchoolKhulna University Khulna Bangladesh
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical SciencesFaculty of PharmacyThe University of Jordan Amman Jordan
| | - Dima A. Sabbah
- Department of PharmacyFaculty of PharmacyAl‐Zaytoonah University of Jordan Amman Jordan
| | | |
Collapse
|
12
|
Paz MFCJ, Gomes Júnior AL, de Alencar MVOB, Tabrez S, Islam MT, Jabir NR, Oves M, Alam MZ, Asghar MN, Ali ES, da Conceição Machado K, da Conceição Machado K, da Silva FCC, Sobral ALP, de Castro E Sousa JM, de Moraes GP, Mishra SK, da Silva J, de Carvalho Melo-Cavalcante AA. Effect of Diets, Familial History, and Alternative Therapies on Genomic Instability of Breast Cancer Patients. Appl Biochem Biotechnol 2018; 188:282-296. [PMID: 30430345 DOI: 10.1007/s12010-018-2918-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022]
Abstract
This study evaluates a correlation between family history, micronutrients intake, and alternative therapies with genetic instability, before and during breast cancer treatment. For this study, a total of 150 women were selected. Among those, 50 women were breast cancer patients on chemotherapy, while 50 breast cancer patients were on radiotherapy, and 50 were healthy females. All the participants signed the informed consent form and answered the public health questionnaire. Samples of buccal epithelial and peripheral blood cells were collected and analyzed through micronucleus and comet assays. The cells were evaluated for apoptosis and DNA damage. Results showed the association of patients' family history with an increase in toxicogenetic damage before and during cancer therapy. On the other hand, patients with late-onset cancer also presented genetic instability before and during therapy, along with those who did not take sufficient vegetables and alternative therapies. A positive correlation was observed between the genetic instability and alternative therapies, while inverse correlation was recorded with the vegetable consumption. Results clearly explain that the nutritional aspects and alternative therapies influence the genetic instability before and during cancer therapies especially in radiotherapy treated patients. Our data could be used for the monitoring therapies and management of breast cancer patients.
Collapse
Affiliation(s)
- Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), Canoas, RS, 92425-900, Brazil.,Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antônio Luiz Gomes Júnior
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam.
| | - Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad Zubair Alam
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka, 1000, Bangladesh.,College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
| | - Keylla da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Kátia da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - André Luiz Pinho Sobral
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Germano Pinho de Moraes
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, 470003, India
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), Canoas, RS, 92425-900, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| |
Collapse
|