1
|
Ajisebiola BS, Toromade AA, Oladele JO, Mustapha ARK, Fagbenro OS, Adeyi AO. Echis ocellatus venom-induced sperm functional deficits, pro-apoptotic and inflammatory activities in male reproductive organs in rats: antagonistic role of kaempferol. BMC Pharmacol Toxicol 2024; 25:46. [PMID: 39123263 PMCID: PMC11311923 DOI: 10.1186/s40360-024-00776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Echis ocellatus envenoming is potentially toxic initiating clinical damages on male reproductive system. Kaempferol is a therapeutic agent with neutralizing potentials on snake venom toxins. This study investigated the antagonistic effect of kaempferol on E. ocellatus venom (EoV)-induced reproductive toxicities. METHODS Fifty adult male rats were sorted at random into five groups of ten rats for this study. The control rats were allotted to group 1, while rats in groups 2-5 were injected with 0.22 mg/kg bw (LD50) of EoV intraperitoneally. Rats in group 2 were not treated while groups 3-5 rats were treated with serum antivenom (0.2 ml), and 4 and 8 mg/kg bw of kaempferol post envenoming, respectively. RESULTS EoV actuated reproductive toxicity, significantly decreased sperm parameters, and enhanced inflammatory, oxidative stress, and apoptotic biomarkers in reproductive organs of untreated envenomed rats. However, treatment with kaempferol alleviated the venom-induced reproductive disorders with a dose dependent effect. Kaempferol significantly increased the testicular weight, organo-somatic index, sperm parameters, and normalized the levels of serum luteinizing hormone, testosterone, and follicle stimulating hormone. Kaempferol ameliorated testicular and epididymal oxidative stress as evidenced by significant decrease in malondialdehyde (MDA) levels, enhancement of reduced glutathione (GSH) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The inflammatory biomarkers; nitric oxide (NO) levels and myeloperoxidase activity (MPO), and apoptotic biomarkers; caspase 3 and caspase 9 activities were substantially suppressed in the testis and epididymis of envenomed rats treated with kaempferol. CONCLUSION Results revealed kaempferol as a potential remedial agent against reproductive toxicity that could manifest post-viper envenoming.
Collapse
Affiliation(s)
| | | | | | | | - Olukunle Silas Fagbenro
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Akindele Oluwatosin Adeyi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Zhao H, Jiang Z, Ju Y, Lu J. High-selective two-site fluorescent probe for Cys/SO 2 detection and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123494. [PMID: 37813089 DOI: 10.1016/j.saa.2023.123494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
A fluorescent probe has been designed using cyanine phenothiazine and 7-nitro-1,2,3-benzoxadiazole (NBD) for selective detection of Cys-SO2 components. The probe utilizes the NBD structure to achieve specificity towards Cys and employs a reaction mechanism between the double bond of cyanine and phenothiazine with SO32- to achieve selectivity towards SO2. Importantly, the NBPI phenothiazine structure incorporates a large C-O bond energy attached to NBD, effectively eliminating interference from Hcy and ensuring highly selective response to Cys. The optimized design of the probe enables excellent linearity and extremely low detection limits for Cys-SO2 components in vitro experiments. The probe NBPI allows separate detection of Cys-SO2 in the presence of both components. Furthermore, the probe NBPI demonstrated successful imaging of endogenous and exogenous Cys and SO2 in cell studies.
Collapse
Affiliation(s)
- Hanqing Zhao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhe Jiang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yong Ju
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Hanna DH, Beshay SN, El Shafee E, El-Rahman HAA. The protective effect of aqueous extract of Stevia rebaudiana against tartrazine toxicity in male Wistar rat. Cell Biochem Funct 2023; 41:1462-1476. [PMID: 38010705 DOI: 10.1002/cbf.3886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Tartrazine is a yellow colouring agent that is commonly used in foods; however, high dosages of Tartrazine affect fertility and create oxidative stress by generating free radicals. A plant species known as Stevia rebaudiana has natural antioxidants that show promise for protecting testicular tissue. Consequently, this study was intended to examine the ameliorative effect of the aqueous extract of S. rebaudiana (Stevia) on the fertility of male Wistar rats induced by the daily oral intake of Tartrazine. Utilizing gas chromatography-mass spectrometry, phytochemical identification was accomplished for Stevia extract. Study groups were separated into several groups: the first group (the control) got distilled water for up to 56 days; the Stevia group (1000 mg/kg), the Tartrazine group (300 mg/kg) and the Stevia and Tartrazine group (the group was given Tartrazine after 1 h of Stevia extract intake). Also, the oxidative damage in testicular tissues was assessed by measuring the levels of malondialdehyde (MDA) and antioxidants (catalase [CAT], superoxide dismutase [SOD] and glutathione reductase [GSH]). Further, histological alterations were examined. In addition, cyclic AMP-responsive element modulator (Crem) gene expression levels and their relative proteins were measured in the testicular tissues using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Sperm analysis and testosterone concentration were also performed. SPSS version 25 was used for the analysis of results while (p < .05) was regarded as significant. Compared with the control group, the results demonstrated that Tartrazine caused a significant reduction (p < .05) in the testosterone hormone level (0.70 ± 0.21) and the Crem protein quantity (1.21 ± 0.23) in the treated Tartrazine group. Also, it had a significant decrease (p < .05) in sperm motility, viability, count and antioxidant levels. Moreover, there was a significant increase (p < .05) in sperm abnormalities, MDA level (7.40 ± 1.10), kidney and liver function parameters, and DNA degradation in the treated Tartrazine group compared with the control group. On the contrary, the Stevia extract intake enhanced the testosterone (2.50 ± 0.60), antioxidants and Crem protein levels (2.33 ± 0.10) with an improvement in sperm quality in the Stevia and Tartrazine-treated group compared with the Tartrazine group. Stevia also caused a significant decrease (p < .05) in the MDA level (3.20 ± 0.20), and sperm abnormalities with an enhancement of the liver and kidney function parameters in the Stevia and Tartrazine-treated group compared to the Tartrazine group. Stevia administration has a protective effect on the testicular tissues and sperm quality against toxicity induced by Tartrazine exposure, so it will be a good antioxidant drug to be administered daily before daily administration of Tartrazine.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - E El Shafee
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
4
|
Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, Ros-Santaella JL. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H 2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res 2023; 19:52. [PMID: 36797726 PMCID: PMC9933379 DOI: 10.1186/s12917-023-03593-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) donors are crucial tools not only for understanding the role of H2S in cellular function but also as promising therapeutic agents for oxidative stress-related diseases. This study aimed to explore the effect of amino acid-derived N-thiocarboxyanhydrides (NTAs), which release physiological H2S levels in the presence of carbonic anhydrase, on porcine sperm function during short-term incubation with and without induced oxidative stress. For this purpose, we employed two H2S-releasing NTAs with release half-lives (t1/2) in the range of hours that derived from the amino acids glycine (Gly-NTA) or leucine (Leu-NTA). Because carbonic anhydrase is crucial for H2S release from NTAs, we first measured the activity of this enzyme in the porcine ejaculate. Then, we tested the effect of Gly- and Leu-NTAs at 10 and 1 nM on sperm mitochondrial activity, plasma membrane integrity, acrosomal status, motility, motile subpopulations, and redox balance during short-term incubation at 38 °C with and without a reactive oxygen species (ROS)-generating system. RESULTS Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H2S on sperm function. Both compounds also increased progressive motility over short-term incubation, which may translate into prolonged sperm survival. CONCLUSIONS The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H2S in sperm biology. For the first time, beneficial effects of NTAs on mitochondrial activity have been found in mammalian cells in the presence and absence of oxidative stress. NTAs are interesting compounds to investigate the role of H2S in sperm mitochondria-dependent events and to develop H2S-related therapeutic protocols against oxidative stress in assisted reproductive technologies.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| | - Abigail F. Chinn
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Martin Kadlec
- grid.15866.3c0000 0001 2238 631XDepartment of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Francisco Alberto García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Pavel Novy
- grid.15866.3c0000 0001 2238 631XDepartment of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - John B. Matson
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| |
Collapse
|
5
|
Escada-Rebelo S, Ramalho-Santos J. Oxidative and Nitrosative Stress Detection in Human Sperm Using Fluorescent Probes. Methods Mol Biol 2023; 2566:45-52. [PMID: 36152241 DOI: 10.1007/978-1-0716-2675-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a natural by-product of mitochondrial respiration, reactive oxygen species (ROS) in sperm play a role in promoting fertilization, by intervening in a series of events. Nevertheless, an abnormal and uncounteracted increase in ROS production leads to oxidative stress (OS) which can, ultimately, culminate in cell death. An established relationship between OS and male infertility highlights the importance of an accurate detection method for ROS content that can be easily implemented and reproduced in any andrology lab. More recently, reactive nitrogen species (RNS) production and subsequent nitrosative stress have also been described. Here we describe the use of fluorescent probes, including some that targeted to the mitochondria due to the coupling of a cation (TPP+), in order to assess the levels of different ROS and RNS in human sperm using flow cytometry and/or fluorescent microscopy. This methodology is user friendly and accurate and can be safely applied in research- and/or clinical-based contexts.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine (BEB), IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
7
|
Dutta S, Sengupta P, Das S, Slama P, Roychoudhury S. Reactive Nitrogen Species and Male Reproduction: Physiological and Pathological Aspects. Int J Mol Sci 2022; 23:ijms231810574. [PMID: 36142487 PMCID: PMC9506194 DOI: 10.3390/ijms231810574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive nitrogen species (RNS), like reactive oxygen species (ROS), are useful for sustaining reproductive processes such as cell signaling, the regulation of hormonal biosynthesis, sperm capacitation, hyperactivation, and acrosome reaction. However, endogenous levels of RNS beyond physiological limits can impair fertility by disrupting testicular functions, reducing gonadotropin production, and compromising semen quality. Excessive RNS levels cause a variety of abnormalities in germ cells and gametes, particularly in the membranes and deoxyribonucleic acid (DNA), and severely impair the maturation and fertilization processes. Cell fragmentation and developmental blockage, usually at the two-cell stage, are also connected with imbalanced redox status of the embryo during its early developmental stage. Since high RNS levels are closely linked to male infertility and conventional semen analyses are not reliable predictors of the assisted reproductive technology (ART) outcomes for such infertility cases, it is critical to develop novel ways of assessing and treating oxidative and/or nitrosative stress-mediated male infertility. This review aims to explicate the physiological and pathological roles of RNS and their relationship with male reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd., Selaiyur, Chennai 600073, India
| | - Pallav Sengupta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd., Selaiyur, Chennai 600073, India
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - Sanghamitra Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
- Correspondence: (P.S.); (S.R.)
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
- Correspondence: (P.S.); (S.R.)
| |
Collapse
|
8
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Vickram S, Rohini K, Anbarasu K, Dey N, Jeyanthi P, Thanigaivel S, Issac PK, Arockiaraj J. Semenogelin, a coagulum macromolecule monitoring factor involved in the first step of fertilization: A prospective review. Int J Biol Macromol 2022; 209:951-962. [PMID: 35447263 DOI: 10.1016/j.ijbiomac.2022.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Human male infertility affects approximately 1/10 couples worldwide, and its prevalence is found more in developed countries. Along with sperm cells, the secretions of the prostate, seminal vesicle and epididymis plays a major role in proper fertilization. Many studies have proven the functions of seminal vesicle secretions, especially semenogelin protein, as an optimiser for fertilization. Semenogelin provides the structural components for coagulum formation after ejaculation. It binds with eppin and is found to have major functions like motility of sperm, transporting the sperm safely in the immune rich female reproductive tract until the sperm cells reach the egg intact. The capacitation process is essential for proper fertilization and semenogelin involved in mediating capacitation in time. Also, it has control of events towards the first step in the fertilization process. It is a Zn ions binding protein, and Zn ions act as a cofactor that helps in the proper motility of sperm cells. Therefore, any imbalance in protein that automatically affect sperm physiology and fertility status. This review sheds a comprehensive and critical view on the significant functions of semenogelin in fertilization. This review can open up advanced proteomics research on semenogelin towards unravelling molecular mechanisms in fertilization.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Krishnan Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600 062, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
10
|
Kadlec M, Pintus E, Ros-Santaella JL. The Interaction of NO and H 2S in Boar Spermatozoa under Oxidative Stress. Animals (Basel) 2022; 12:ani12050602. [PMID: 35268171 PMCID: PMC8909797 DOI: 10.3390/ani12050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Various recent studies dedicated to the role of nitric oxide (NO) and hydrogen sulfide (H2S) in somatic cells provide evidence for an interaction of the two gasotransmitters. In the case of male gametes, only the action of a single donor of each gasotransmitter has been investigated up until today. It has been demonstrated that, at low concentrations, both gasotransmitters alone exert a positive effect on sperm quality parameters. Moreover, the activity of gaseous cellular messengers may be affected by the presence of oxidative stress, an underlying condition of several male reproductive disorders. In this study, we explored the effect of the combination of two donors SNP and NaHS (NO and H2S donors, respectively) on boar spermatozoa under oxidative stress. We applied NaHS, SNP, and their combination (DD) at 100 nM concentration in boar spermatozoa samples treated with Fe2+/ascorbate system. After 90 min of incubation at 38 °C, we have observed that progressive motility (PMot) and plasma membrane integrity (PMI) were improved (p < 0.05) in DD treatment compared to the Ctr sample under oxidative stress (CtrOX). Moreover, the PMot of DD treatment was higher (p < 0.05) than that of NaHS. Similar to NaHS, SNP treatment did not overcome the PMot and PMI of CtrOX. In conclusion, for the first time, we provide evidence that the combination of SNP and NaHS surmounts the effect of single-donor application in terms of PMot and PMI in porcine spermatozoa under oxidative stress.
Collapse
|
11
|
Deng X, Wu Y, Xu H, Yan J, Liu H, Zhang B. Recent research progress in galactose-based fluorescent probes for detection of biomarkers of liver diseases. Chem Commun (Camb) 2022; 58:12518-12527. [DOI: 10.1039/d2cc04180d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight illustrates the challenges and latest progress in galactose-based fluorescent probes for early diagnosis of liver diseases.
Collapse
Affiliation(s)
- Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 16044, China
| | - Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
12
|
Symeonidis EN, Evgeni E, Palapelas V, Koumasi D, Pyrgidis N, Sokolakis I, Hatzichristodoulou G, Tsiampali C, Mykoniatis I, Zachariou A, Sofikitis N, Kaltsas A, Dimitriadis F. Redox Balance in Male Infertility: Excellence through Moderation-"Μέτρον ἄριστον". Antioxidants (Basel) 2021; 10:antiox10101534. [PMID: 34679669 PMCID: PMC8533291 DOI: 10.3390/antiox10101534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Male infertility, a relatively common and multifactorial medical condition, affects approximately 15% of couples globally. Based on WHO estimates, a staggering 190 million people struggle with this health condition, and male factor is the sole or contributing factor in roughly 20–50% of these cases. Nowadays, urologists are confronted with a wide spectrum of conditions ranging from the typical infertile male to more complex cases of either unexplained or idiopathic male infertility, requiring a specific patient-tailored diagnostic approach and management. Strikingly enough, no identifiable cause in routine workup can be found in 30% to 50% of infertile males. The medical term male oxidative stress infertility (MOSI) was recently coined to describe infertile men with abnormal sperm parameters and oxidative stress (OS), including those previously classified as having idiopathic infertility. OS is a critical component of male infertility, entailing an imbalance between reactive oxygen species (ROS) and antioxidants. ROS abundance has been implicated in sperm abnormalities, while the exact impact on fertilization and pregnancy has long been a subject of considerable debate. In an attempt to counteract the deleterious effects of OS, urologists resorted to antioxidant supplementation. Mounting evidence indicates that indiscriminate consumption of antioxidants has led in some cases to sperm cell damage through a reductive-stress-induced state. The “antioxidant paradox”, one of the biggest andrological challenges, remains a lurking danger that needs to be carefully avoided and thoroughly investigated. For that reason, oxidation-reduction potential (ORP) emerged as a viable ancillary tool to basic semen analysis, measuring the overall balance between oxidants and antioxidants (reductants). A novel biomarker, the Male infertility Oxidative System (MiOXSYS®), is a paradigm shift towards that goal, offering a quantification of OS via a quick, reliable, and reproducible measurement of the ORP. Moderation or “Μέτρον” according to the ancient Greeks is the key to successfully safeguarding redox balance, with MiOXSYS® earnestly claiming its position as a guarantor of homeostasis in the intracellular redox milieu. In the present paper, we aim to offer a narrative summary of evidence relevant to redox regulation in male reproduction, analyze the impact of OS and reductive stress on sperm function, and shed light on the “antioxidant paradox” phenomenon. Finally, we examine the most up-to-date scientific literature regarding ORP and its measurement by the recently developed MiOXSYS® assay.
Collapse
Affiliation(s)
- Evangelos N. Symeonidis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
| | - Evangelini Evgeni
- Cryogonia Cryopreservation Bank, 11526 Athens, Greece; (E.E.); (D.K.)
| | - Vasileios Palapelas
- 3rd Department of Obstetrics and Gynecology, Hippokration General Hospital, School of Medicine, Aristotle University, 54642 Thessaloniki, Greece;
| | - Dimitra Koumasi
- Cryogonia Cryopreservation Bank, 11526 Athens, Greece; (E.E.); (D.K.)
| | - Nikolaos Pyrgidis
- Department of Urology, ‘Martha-Maria’ Hospital Nuremberg, 90491 Nuremberg, Germany; (N.P.); (I.S.); (G.H.)
| | - Ioannis Sokolakis
- Department of Urology, ‘Martha-Maria’ Hospital Nuremberg, 90491 Nuremberg, Germany; (N.P.); (I.S.); (G.H.)
| | | | | | - Ioannis Mykoniatis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Ares Kaltsas
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Fotios Dimitriadis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
- Correspondence: ; Tel.: +30-23-1041-1121
| |
Collapse
|
13
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
14
|
L-carnitine extenuates endocrine disruption, inflammatory burst and oxidative stress in carbendazim-challenged male rats via upregulation of testicular StAR and FABP9, and downregulation of P38-MAPK pathways. Toxicology 2021; 457:152808. [PMID: 33965443 DOI: 10.1016/j.tox.2021.152808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 02/03/2023]
Abstract
We have addressed in the current study the potential of L-carnitine (LC) to extenuate the reproductive toxic insults of carbendazim (CBZ) in male rats, and the molecular mechanisms whereby carnitine would modify the spermatogenic and steroidogenic derangements invoked by the endocrine disruptor. Herein, animals received daily doses of carbendazim (100 mg/kg) by gavage for 8 weeks. Another CBZ-challenged group was co-supplemented with LC (500 mg/kg, IP) twice weekly for 8 weeks. Sperm quantity and quality (morphology, motility and viability), serum testosterone and gonadotropins, and thyroid hormone levels were assessed. Serum tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) concentrations were determined by ELISA. Oxidant/antioxidant status in rat testis was investigated via measuring testicular contents of malondialdehyde (MDA) and reduced glutathione (GSH), as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Immunohistochemical localizations of the junctional protein; occludin, and inflammatory markers; inducible nitric oxide synthase (iNOS) and nuclear factor kappa beta (NF-κB) were further analyzed. A host of transduction genes that regulate spermatogenic and steroidogenic pathways, and their encoded proteins namely, Steroidogenic Acute Regulatory Protein (StAR), Fatty acid binding protein 9 (FABP9) and P38-mitogen activated protein kinase (P38-MAPK) were assessed by real time quantitative (RT-qPCR) and Western blot. LC improved rat spermiogram, testicular histological alterations and endocrine perturbances, and modulated genes' expressions and their respective proteins. In conclusion, LC effects appear to reside for the most part on its endocrine-preserving, anti-oxidant and anti-inflammatory properties through a myriad of interlaced signal transductions that ultimately recapitulated its beneficial effects on spermatogenesis and steroidogenesis.
Collapse
|
15
|
Wu L, Wei Y, Li H, Li W, Gu C, Sun J, Xia H, Zhang J, Chen F, Liu Q. The ubiquitination and acetylation of histones are associated with male reproductive disorders induced by chronic exposure to arsenite. Toxicol Appl Pharmacol 2020; 408:115253. [PMID: 32991915 DOI: 10.1016/j.taap.2020.115253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Exposure to arsenic, which occurs via various routes, can cause reproductive toxicity. However, the mechanism for arsenic-induced reproductive disorders in male mice has not been extensively investigated. Here, 6-week-old male mice were dosed to 0, 5, 10, or 20 ppm sodium arsenite (NaAsO2), an active form of arsenic, in drinking water for six months. For male mice exposed to arsenite, fertility was lower compared to control mice. Moreover, for exposed mice, there were lower sperm counts, lower sperm motility, and higher sperm malformation ratios. Further, the mRNA and protein levels of the gonadotropin-regulated testicular RNA helicase (DDX25) and chromosome region maintenance-1 protein (CRM1), along with proteins associated with high mobility group box 2 (HMGB2), phosphoglycerate kinase 2 (PGK2), and testicular angiotensin-converting enzyme (tACE) were lower. Furthermore, chronic exposure to arsenite led to lower H2A ubiquitination (ubH2A); histone H3 acetylation K18 (H3AcK18); and histone H4 acetylations K5, K8, K12, and K16 (H4tetraAck) in haploid spermatids from testicular tissues. These alterations disrupted deposition of protamine 1 (Prm1) in testes. Overall, the present results indicate that the ubiquitination and acetylation of histones is involved in the spermiogenesis disorders caused by chronic exposure to arsenite, which points to a previously unknown connection between the modification of histones and arsenite-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lu Wu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chenxi Gu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jing Sun
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Babaei A, Kheradmand N, Baazm M, Nejati N, Khalatbari M. Protective effect of vitamin E on sperm parameters in rats infected with Candida albicans. Andrologia 2020; 52:e13593. [PMID: 32400037 DOI: 10.1111/and.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022] Open
Abstract
Candida albicans is one of the most frequent pathogens present in the reproductive system. The negative in vitro effects of C. albicans on sperm functions have previously been studied. The current study was undertaken to investigate the effects of C. albicans infection in vivo on sperm quality and to evaluate the efficacy of vitamin E administration in rats infected with C. albicans. In this study, 5 days after infection induction, animals were treated with vitamin E for 5 weeks. Thereafter, sperm parameters, lipid peroxidation (LPO), total antioxidant capacity (TAC), hormonal analysis and testis histology were evaluated. Based on the results, sperm parameters and TAC significantly reduced, while LPO and tissue damage increased (p ≤ .05) following the infection. Hormone analysis showed low LH and testosterone levels in serum of the infected rats. Treatment with vitamin E significantly (p ≤ .05) improved sperm quality and testis histology, increased TAC and reduced LPO. In addition, vitamin E administration significantly increased (p ≤ .05) serum LH and testosterone levels. These results clearly indicate that vitamin E is effective in attenuating the adverse effects of C. albicans infection on male fertility and could be used as a complementary treatment for patients who suffer from fertility disorders following C. albicans infection.
Collapse
Affiliation(s)
- Arash Babaei
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Nasrin Kheradmand
- Department of Nursing, Malayer Branch, Islamic Azad University, Malayer, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Negin Nejati
- Department of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Khalatbari
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
17
|
Kadlec M, Ros-Santaella JL, Pintus E. The Roles of NO and H 2S in Sperm Biology: Recent Advances and New Perspectives. Int J Mol Sci 2020; 21:E2174. [PMID: 32245265 PMCID: PMC7139502 DOI: 10.3390/ijms21062174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/24/2023] Open
Abstract
After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.
Collapse
Affiliation(s)
| | | | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.K.); (J.L.R.-S.)
| |
Collapse
|
18
|
Nowicka-Bauer K, Nixon B. Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants (Basel) 2020; 9:antiox9020134. [PMID: 32033035 PMCID: PMC7070831 DOI: 10.3390/antiox9020134] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
A state of oxidative stress (OS) and the presence of reactive oxygen species (ROS) in the male reproductive tract are strongly correlated with infertility. While physiological levels of ROS are necessary for normal sperm functioning, elevated ROS production can overwhelm the cell's limited antioxidant defenses leading to dysfunction and loss of fertilizing potential. Among the deleterious pleiotropic impacts arising from OS, sperm motility appears to be particularly vulnerable. Here, we present a mechanistic account for how OS contributes to altered sperm motility profiles. In our model, it is suggested that the abundant polyunsaturated fatty acids (PUFAs) residing in the sperm membrane serve to sensitize the male germ cell to ROS attack by virtue of their ability to act as substrates for lipid peroxidation (LPO) cascades. Upon initiation, LPO leads to dramatic remodeling of the composition and biophysical properties of sperm membranes and, in the case of the mitochondria, this manifests in a dissipation of membrane potential, electron leakage, increased ROS production and reduced capacity for energy production. This situation is exacerbated by the production of cytotoxic LPO byproducts such as 4-hydroxynonenal, which dysregulate molecules associated with sperm bioenergetic pathways as well as the structural and signaling components of the motility apparatus. The impact of ROS also extends to lesions in the paternal genome, as is commonly seen in the defective spermatozoa of asthenozoospermic males. Concluding, the presence of OS in the male reproductive tract is strongly and positively correlated with reduced sperm motility and fertilizing potential, thus providing a rational target for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence:
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia;
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|