1
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
2
|
Tang X, Xu R, Wang Y, Chen K, Cui S. TERC haploid cell reprogramming: a novel therapeutic strategy for aplastic anemia. Mol Med 2023; 29:94. [PMID: 37424004 DOI: 10.1186/s10020-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
The telomerase RNA component (TERC) gene plays an important role in telomerase-dependent extension and maintenance of the telomeres. In the event of TERC haploinsufficiency, telomere length is often affected; this, in turn, can result in the development of progeria-related diseases such as aplastic anemia (AA) and congenital keratosis. Cell reprogramming can reverse the differentiation process and can, therefore, transform cells into pluripotent stem cells with stronger differentiation and self-renewal abilities; further, cell reprograming can also extend the telomere length of these cells, which may be crucial in the diagnosis and treatment of telomere depletion diseases such as AA. In this study, we summarized the effects of TERC haploid cell reprogramming on telomere length and the correlation between this alteration and the pathogenesis of AA; by investigating the role of cell reprogramming in AA, we aimed to identify novel diagnostic indicators and therapeutic strategies for patients with AA.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Kaiqing Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
3
|
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. uPAR: An Essential Factor for Tumor Development. J Cancer 2021; 12:7026-7040. [PMID: 34729105 PMCID: PMC8558663 DOI: 10.7150/jca.62281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be one of the most important factors affecting therapeutic efficacy. An improved understanding of the interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information that may help to better predict the disease course and response to therapy.
Collapse
Affiliation(s)
- Tao Lv
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Ying Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China 610500
| | - Hemei Yuan
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Xuelin Cui
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiashun Xu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jingye Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianlin Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| |
Collapse
|
4
|
Kumar M, Jaiswal RK, Yadava PK, Singh RP. An assessment of poly (ADP-ribose) polymerase-1 role in normal and cancer cells. Biofactors 2020; 46:894-905. [PMID: 33098603 DOI: 10.1002/biof.1688] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is a superfamily of 18 proteins characterized by the PARP homology domain, the catalytic domain. This catalytic domain helps in the ADP-ribosylation of various acceptor proteins using nicotinamide adenine dinucleotide (NAD+) as a donor for ADP-ribose. PARP-1 and PARP-2 carry out 80% of poly-ADP-ribosylation of cellular protein. Hence, their combined knockout results in embryonic lethality of mice. PARP-1 consists of three major domains, namely, DNA binding domain, automodification domain, and a catalytic domain. These domains further consist of subdomains and motifs, which helps PARP-1 in a diverse function. PARP-1 is mainly involved in DNA damage detection and repair, but emerging evidence suggests its role in many other functions such as DNA synthesis, replication, apoptosis, necrosis, and cancer progression. Herein, we review the current state of the PARP-1 role in DNA damage repair and other biological processes including epithelial to mesenchymal transition (EMT). We have also observed the role of PARP-1 in modulating EMT regulators like E-cadherin, Vimentin, Claudin-1, Snail, Smad-4, Twist-1, and β-catenin. Here, we have also attempted to relate the role of PARP-1 in EMT of cancer cells.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pramod K Yadava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Chang MC, Chang HH, Hsieh WC, Huang WL, Lian YC, Jeng PY, Wang YL, Yeung SY, Jeng JH. Effects of transforming growth factor-β1 on plasminogen activation in stem cells from the apical papilla: role of activating receptor-like kinase 5/Smad2 and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling. Int Endod J 2020; 53:647-659. [PMID: 31955434 DOI: 10.1111/iej.13266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
AIM To study the effects of TGF-β1 on the plasminogen activation (PA) system of stem cells from the apical papilla (SCAP) and its signalling. METHODOLOGY SCAP cells were isolated from the apical papilla of immature permanent teeth extracted for orthodontic reasons. They were exposed to various concentration of TGF-β1 with/without pretreatment and coincubation by SB431542 (ALK/Smad2/3 inhibitor), or U0126 (MEK/ERK inhibitor). MTT assay, Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to detect their effects on cell viability, and the protein expression of plasminogen activator inhibitor-1 (PAI-1), urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and their secretion. The paired Student's t-test was used for statistical analysis. RESULTS TGF-β1 significantly stimulated PAI-1 and soluble uPAR (suPAR) secretion of SCAP cells (P < 0.05), whereas uPA secretion was inhibited. Accordingly, TGF-β1 induced both PAI-1 and uPAR protein expression of SCAP cells. SB431542 (an ALK5/Smad2/3 inhibitor) pretreatment and coincubation prevented the TGF-β1-induced PAI-1 and uPAR of SCAP. U0126 attenuated the TGF-β1-induced expression/secretion of uPAR, but not PAI-1 in SCAP. SB431542 reversed the TGF-β1-induced decline of uPA. CONCLUSIONS TGF-β1 may affect the repair/regeneration activities of SCAP via differential increase or decrease of PAI-1, uPA and uPAR. These effects induced by TGF-β1 are associated with ALK5/Smad2/3 and MEK/ERK activation. Elucidation the signalling pathways and effects of TGF-β1 is useful for treatment of immature teeth with open apex by revascularization/revitalization procedures and tissue repair/regeneration.
Collapse
Affiliation(s)
- M C Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - H H Chang
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - W C Hsieh
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - W L Huang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Y C Lian
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - P Y Jeng
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Y L Wang
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - S Y Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - J H Jeng
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|