Malviya G, Conti F, Chianelli M, Scopinaro F, Dierckx RA, Signore A. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies.
Eur J Nucl Med Mol Imaging 2009;
37:386-98. [PMID:
19777175 PMCID:
PMC2816238 DOI:
10.1007/s00259-009-1272-0]
[Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/25/2009] [Indexed: 01/03/2023]
Abstract
The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-alpha, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with (99m)Tc or (111)In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and follow-up.
Collapse