1
|
Radzlin N, Mohamad Ali MS, Goh KM, Yaakop AS, Zakaria II, Kahar UM. Exploring a novel GH13_5 α-amylase from Jeotgalibacillus malaysiensis D5 T for raw starch hydrolysis. AMB Express 2024; 14:71. [PMID: 38874807 PMCID: PMC11178733 DOI: 10.1186/s13568-024-01722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
α-Amylase plays a crucial role in the industrial degradation of starch. The genus Jeotgalibacillus of the underexplored marine bacteria family Caryophanaceae has not been investigated in terms of α-amylase production. Herein, we report the comprehensive analysis of an α-amylase (AmyJM) from Jeotgalibacillus malaysiensis D5T (= DSM28777T = KCTC33550T). Protein phylogenetic analysis indicated that AmyJM belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and exhibits low sequence identity with known α-amylases, with its closest counterpart being the GH13_5 α-amylase from Bacillus sp. KSM-K38 (51.05% identity). Purified AmyJM (molecular mass of 70 kDa) is stable at a pH range of 5.5-9.0 and optimally active at pH 7.5. The optimum temperature for AmyJM is 40 °C, where the enzyme is reasonably stable at this temperature. Similar to other α-amylases, the presence of CaCl2 enhanced both the activity and stability of AmyJM. AmyJM exhibited activity toward raw and gelatinized forms of starches and related α-glucans, generating a mixture of reducing sugars, such as glucose, maltose, maltotriose, maltotetraose, and maltopentaose. In raw starch hydrolysis, AmyJM exhibited its highest efficiency (51.10% degradation) in hydrolyzing raw wheat starch after 3-h incubation at 40 °C. Under the same conditions, AmyJM also hydrolyzed tapioca, sago, potato, rice, and corn raw starches, yielding 16.01-30.05%. These findings highlight the potential of AmyJM as a biocatalyst for the saccharification of raw starches, particularly those derived from wheat.
Collapse
Affiliation(s)
- Nurfatini Radzlin
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute Bioscience, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Shi Y, Chen J, Hou X. Similarities and Differences of Photosynthesis Establishment Related mRNAs and Novel lncRNAs in Early Seedlings (Coleoptile/Cotyledon vs. True Leaf) of Rice and Arabidopsis. Front Genet 2020; 11:565006. [PMID: 33093843 PMCID: PMC7506105 DOI: 10.3389/fgene.2020.565006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022] Open
Abstract
Photosynthesis uses sunlight and carbon dioxide to produce biomass that is vital to all life on earth. In seed plants, leaf is the main organ for photosynthesis and production of organic nutrients. The seeds are mobilized to fuel post-germination seedling growth until seedling photosynthesis can be efficiently established. However, the photosynthesis and metabolism in the early growth and development have not been studied systematically and are still largely unknown. In this study, we used two model plants, rice (Oryza sativa L.; monocotyledonous) and Arabidopsis (Arabidopsis thaliana; dicotyledonous) to determine the similarities and differences in photosynthesis in cotyledons and true leaves during the early developmental stages. The photosynthesis-related genes and proteins, and chloroplast functions were determined through RNA-seq, real-time PCR, western blotting and chlorophyll fluorescence analysis. We found that in rice, the photosynthesis established gradually from coleoptile (cpt), incomplete leaf (icl) to first complete leaf (fcl); whereas, in Arabidopsis, photosynthesis well-developed in cotyledon, and the photosynthesis-related genes and proteins expressed comparably in cotyledon (cot), first true leaf (ftl) and second true leaf (stl). Additionally, we attempted to establish an mRNA-lncRNA signature to explore the similarities and differences in photosynthesis establishment between the two species, and found that DEGs, including encoding mRNAs and novel lncRNAs, related to photosynthesis in three stages have considerable differences between rice and Arabidopsis. Further GO and KEGG analysis systematically revealed the similarities and differences of expression styles of photosystem subunits and assembly factors, and starch and sucrose metabolisms between cotyledons and true leaves in the two species. Our results help to elucidate the gene functions of mRNA-lncRNA signatures.
Collapse
Affiliation(s)
- Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jian Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Janeček Š, Mareček F, MacGregor EA, Svensson B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 2019; 37:107451. [PMID: 31536775 DOI: 10.1016/j.biotechadv.2019.107451] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023]
Abstract
The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - E Ann MacGregor
- 2 Nicklaus Green, Livingston EH54 8RX, West Lothian, United Kingdom
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Wu YR, Mao A, Sun C, Shanmugam S, Li J, Zhong M, Hu Z. Catalytic hydrolysis of starch for biohydrogen production by using a newly identified amylase from a marine bacterium Catenovulum sp. X3. Int J Biol Macromol 2017. [PMID: 28647525 DOI: 10.1016/j.ijbiomac.2017.06.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An identified cold-adaptive, organic solvents-tolerant alkaline α-amylase (HP664) from Catenovulum sp. strain X3 was heterologously expressed and characterized in E. coli, and it was further applied to starch saccharification for biohydrogen production. The recombinant HP664 belongs to a member of glycoside hydrolase family 13 (GH13), with a molecular weight of 69.6kDa without signal peptides, and also shares a relatively low similarity (49%) to other reported amylases. Biochemical characterization demonstrated that the maximal enzymatic activity of HP664 was observed at 35°C and pH 9.0. Most metal ions inhibited its activity; however, low polar organic solvents (e.g., benzene and n-hexane) could enhance the activity by 35-50%. Additionally, HP664 also exhibited the catalytic capability on various polysaccharides, including potato starch, amylopectin, dextrin and agar. In order to increase the bioavailability of starch for H2 production, HP664 was utilized to elevate fermentable oligosaccharide level, and the results revealed that the maximal hydrolytic percentage of starch was up to 44% with 12h of hydrolysis using 5.63U of HP664. Biohydrogen fermentation of the starch hydrolysate by Clostridium sp. strain G1 yielded 297.7mL of H2 after 84h of fermentation, which is 3.73-fold higher than the control without enzymatic treatment of HP664.
Collapse
Affiliation(s)
- Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Chongran Sun
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | | | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Mingqi Zhong
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China.
| |
Collapse
|
5
|
Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects. Mar Drugs 2016; 14:md14100171. [PMID: 27669268 PMCID: PMC5082319 DOI: 10.3390/md14100171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.
Collapse
|
6
|
Song Q, Wang Y, Yin C, Zhang XH. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T). Enzyme Microb Technol 2016; 90:83-92. [PMID: 27241296 DOI: 10.1016/j.enzmictec.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry.
Collapse
Affiliation(s)
- Qinghao Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Chong Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 2014; 99:717-27. [PMID: 25038927 DOI: 10.1007/s00253-014-5931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
A cold-active α-amylase, AmyI3C6, identified by a functional metagenomics approach was expressed in Escherichia coli and purified to homogeneity. Sequence analysis showed that the AmyI3C6 amylase was similar to α-amylases from the class Clostridia and revealed classical characteristics of cold-adapted enzymes, as did comparison of the kinetic parameters K m and k cat to a mesophilic α-amylase. AmyI3C6 was shown to be heat-labile. Temperature optimum was at 10-15 °C, and more than 70 % of the relative activity was retained at 1 °C. The pH optimum of AmyI3C6 was at pH 8-9, and the enzyme displayed activity in two commercial detergents tested, suggesting that the AmyI3C6 α-amylase may be useful as a detergent enzyme in environmentally friendly, low-temperature laundry processes.
Collapse
|
8
|
Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN, Fox BG. Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:109. [PMID: 25161697 PMCID: PMC4144037 DOI: 10.1186/1754-6834-7-109] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/07/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequences, structures, and evolution of LPMOs to understand the factors that may influence substrate specificity both within and between these enzyme families. RESULTS Comparative analysis of sequences, solved structures, and homology models from AA9 and AA10 LPMO families demonstrated that, although these two LPMO families are highly conserved, structurally they have minimal sequence similarity outside the active site residues. Phylogenetic analysis of the AA10 family identified clades with putative chitinolytic and cellulolytic activities. Estimation of the rate of synonymous versus non-synonymous substitutions (dN/dS) within two major AA10 subclades showed distinct selective pressures between putative cellulolytic genes (subclade A) and CBP21-like chitinolytic genes (subclade D). Estimation of site-specific selection demonstrated that changes in the active sites were strongly negatively selected in all subclades. Furthermore, all codons in the subclade D had dN/dS values of less than 0.7, whereas codons in the cellulolytic subclade had dN/dS values of greater than 1.5. Positively selected codons were enriched at sites localized on the surface of the protein adjacent to the active site. CONCLUSIONS The structural similarity but absence of significant sequence similarity between AA9 and AA10 families suggests that these enzyme families share an ancient ancestral protein. Combined analysis of amino acid sites under Darwinian selection and structural homology modeling identified a subclade of AA10 with diversifying selection at different surfaces, potentially used for cellulose-binding and protein-protein interactions. Together, these data indicate that AA10 LPMOs are under selection to change their function, which may optimize cellulolytic activity. This work provides a phylogenetic basis for identifying and classifying additional cellulolytic or chitinolytic LPMOs.
Collapse
Affiliation(s)
- Adam J Book
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706 USA
| | - Ragothaman M Yennamalli
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
- />Biosciences at Rice, Rice University, George R. Brown Hall, Houston, TX 77005 USA
| | - Taichi E Takasuka
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
| | - Cameron R Currie
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706 USA
| | - George N Phillips
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
- />Biosciences at Rice, Rice University, George R. Brown Hall, Houston, TX 77005 USA
| | - Brian G Fox
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
| |
Collapse
|
9
|
Integrating terminal truncation and oligopeptide fusion for a novel protein engineering strategy to improve specific activity and catalytic efficiency: alkaline α-amylase as a case study. Appl Environ Microbiol 2013; 79:6429-38. [PMID: 23956385 DOI: 10.1128/aem.02087-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) from Alkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.5- and 18.5-fold that of AmyK, respectively. The kcat/Km was increased from 1.0 × 10(5) liters · mol(-1) · s(-1) for AmyK to 30.6 × and 23.2 × 10(5) liters · mol(-1) · s(-1) for AmyKΔC500-587::OP and AmyKΔC492-587::OP, respectively. Comparative analysis of structure models indicated that the higher flexibility around the active site may be the main reason for the improved catalytic efficiency. The proposed terminal truncation and oligopeptide fusion strategy may be effective to engineer other enzymes to improve specific activity and catalytic efficiency.
Collapse
|
10
|
Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency. PLoS One 2013; 8:e57403. [PMID: 23554859 PMCID: PMC3598850 DOI: 10.1371/journal.pone.0057403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/21/2013] [Indexed: 12/03/2022] Open
Abstract
High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering strategy may be useful for the protein engineering of the other microbial enzymes to fulfill industrial requirements.
Collapse
|
11
|
Yang H, Liu L, Shin HD, Chen RR, Li J, Du G, Chen J. Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris. Biotechnol Prog 2012; 29:39-47. [PMID: 23125186 DOI: 10.1002/btpr.1657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/19/2012] [Indexed: 11/09/2022]
Abstract
An alkaline α-amylase gene from alkaliphilic Alkalimonas amylolytica was synthesized based on the preferred codon usage of Escherichia coli and Pichia pastoris, respectively, and then was expressed in the according heterologous host, E. coli BL21 (DE3) and P. pastoris GS115. The alkaline α-amylase expressed in E. coli was designated AmyA, whereas that produced by P. pastoris was designated AmyB. The specific activity of AmyA and AmyB was 16.0 and 16.6 U/mg at pH 9.5 and 50°C, respectively. The optimal pH and pH stability of AmyA and AmyB were similar, whereas the optimum temperature and thermal stability of AmyB were slightly enhanced compared with those of AmyA. The AmyA and AmyB had a similar melting temperature of 64°C and the same catalytic efficiency (k(cat) /K(m) ) of 2.0 × 10(6) L/(mol min). AmyA and AmyB were slightly activated by 1 mM Co(2+) , Ca(2+) , or Na(+) , but inhibited by all other metal ions (K(+) , Mg(2+) , Fe(3+) , Fe(2+) , Zn(2+) , Mn(2+) , and Cu(2+) ). Tween 80 or Tween 60 (10% (w/v)) had little influence on the stability of AmyA and AmyB, while the 10% (w/v) sodium dodecyl sulfate caused the complete loss of AmyA and AmyB activities. The AmyA and AmyB were stable in the presence of solid detergents (washing powder), while were less stable in liquid detergents. Under the optimal conditions in 3-L bioreactor, the extracellular AmyB activity reached 600 U/mL, which was about 10 times as that of AmyA. These results indicated that P. pastoris was a preferable host for alkaline α-amylase expression and the produced alkaline α-amylase had a certain application potential in solid detergents.
Collapse
Affiliation(s)
- Haiquan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Yang H, Liu L, Li J, Du G, Chen J. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilicAlkalimonas amylolytica. Biotechnol Prog 2012; 28:1271-7. [DOI: 10.1002/btpr.1611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/12/2012] [Indexed: 11/10/2022]
|
13
|
Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability. Appl Environ Microbiol 2012; 78:7519-26. [PMID: 22865059 DOI: 10.1128/aem.01307-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work aims to improve the oxidative stability of alkaline amylase from Alkalimonas amylolytica through structure-based site-directed mutagenesis. Based on an analysis of the tertiary structure, five methionines (Met 145, Met 214, Met 229, Met 247, and Met 317) were selected as the mutation sites and individually replaced with leucine. In the presence of 500 mM H(2)O(2) at 35°C for 5 h, the wild-type enzyme and the M145L, M214L, M229L, M247L, and M317L mutants retained 10%, 28%, 46%, 28%, 72%, and 43% of the original activity, respectively. Concomitantly, the alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant were also improved. The pH stability of the mutants (M145L, M214L, M229L, and M317L) remained unchanged compared to that of the wild-type enzyme, while the stable pH range of the M247L mutant was extended from pH 7.0 to 11.0 for the wild type to pH 6.0 to 12.0 for the mutant. The wild-type enzyme lost its activity after incubation at 50°C for 2 h, and the M145L, M214L, M229L, and M317L mutants retained less than 14% of the activity, whereas the M247L mutant retained 34% of the activity under the same conditions. Compared to the wild-type enzyme, the k(cat) values of the M145L, M214L, M229L, and M317L mutants decreased, while that of the M247L mutant increased slightly from 5.0 × 10(4) to 5.6 × 10(4) min(-1). The mechanism responsible for the increased oxidative stability, alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant was further analyzed with a structure model. The combinational mutants were also constructed, and their biochemical properties were characterized. The resistance of the wild-type enzyme and the mutants to surfactants and detergents was also investigated. Our results indicate that the M247L mutant has great potential in the detergent and textile industries.
Collapse
|
14
|
Yang H, Liu L, Li J, Du G, Chen J. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis. Microb Cell Fact 2011; 10:77. [PMID: 21978209 PMCID: PMC3204233 DOI: 10.1186/1475-2859-10-77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. RESULTS The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229) was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min), respectively. The effects of medium compositions (starch, peptone, and soybean meal) and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v), peptone concentration 1.45% (w/v), soybean meal concentration 1.3% (w/v), and temperature 37°C), the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. CONCLUSIONS This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis.
Collapse
Affiliation(s)
- Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | | | | | | |
Collapse
|
15
|
Prakash O, Jaiswal N. A highly efficient and thermostable α-amylase from soya bean seeds. Biotechnol Appl Biochem 2010; 57:105-10. [PMID: 20961290 DOI: 10.1042/ba20100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The α-amylase from soya bean seeds was purified by affinity precipitation, resulting in approx. 20-fold purification with approx. 84% recovery. The purified α-amylase had an optimum pH of 5.5, optimum temperature of 75 °C, Arrhenius energy of activation of 6.03 kcal/mol (1 kcal≈4.184 kJ) and a Km of 2.427 mg/ml (starch substrate). The enzyme had maximum substrate specificity for starch. Among the various metal ions tested, Co2+ and Mn2+ were found to be strong activators. The effect of thiol group modifying agents showed that the thiols of soya bean α-amylase are not directly involved in catalysis. The thermostability of the enzyme makes it suitable for starch liquefaction and the detergent industry respectively.
Collapse
Affiliation(s)
- Om Prakash
- Department of Biochemistry, Banaras Hindu University, Varanasi 221005, UP, India
| | | |
Collapse
|