1
|
Tomilova YE, Russkikh NE, Yi IM, Shaburova EV, Tomilov VN, Pyrinova GB, Brezhneva SO, Tikhonyuk OS, Gololobova NS, Popichenko DV, Arkhipov MO, Bryzgalov LO, Brenner EV, Artyukh AA, Shtokalo DN, Antonets DV, Ivanov MK. Enhancing the reverse transcriptase function in Taq polymerase via AI-driven multiparametric rational design. Front Bioeng Biotechnol 2024; 12:1495267. [PMID: 39720166 PMCID: PMC11666352 DOI: 10.3389/fbioe.2024.1495267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties. Methods The experimental procedure was conducted in several stages: 1) On the basis of a foundational paper, we selected 18 candidate mutations known to affect RTase activity across six sites. These candidates, along with the wild type, were assessed in the wet lab for multiple properties to establish an initial training dataset. 2) Using embeddings of Taq polymerase variants generated by a protein language model, we trained a Ridge regression model to predict multiple enzyme properties. This model guided the selection of 14 new candidates for experimental validation, expanding the dataset for further refinement. 3) To better manage risk by assessing confidence intervals on predictions, we transitioned to Gaussian process regression and trained this model on an expanded dataset comprising 33 data points. 4) With this enhanced model, we conducted an in silico screen of over 18 million potential mutations, narrowing the field to 16 top candidates for comprehensive wet-lab evaluation. Results and Discussion This iterative, data-driven strategy ultimately led to the identification of 18 enzyme variants that exhibited markedly improved RTase activity while maintaining a favorable balance of other key properties. These enhancements were generally accompanied by lower Kd, moderately reduced fidelity, and greater tolerance to noncanonical substrates, thereby illustrating a strong interdependence among these traits. Several enzymes validated via this procedure were effective in single-enzyme real-time reverse-transcription PCR setups, implying their utility for the development of new tools for real-time reverse-transcription PCR technologies, such as pathogen RNA detection and gene expression analysis. This study illustrates how AI can be effectively integrated with experimental bioengineering to enhance enzyme functionality systematically. Our approach offers a robust framework for designing enzyme mutants tailored to specific biotechnological applications. The results of our biological activity predictions for mutated Taq polymerases can be accessed at https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms.
Collapse
Affiliation(s)
| | | | | | - Elizaveta V. Shaburova
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | - Dmitry N. Shtokalo
- AcademGene LLC, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Informatics Systems SB RAS, Novosibirsk, Russia
| | - Denis V. Antonets
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail K. Ivanov
- AO Vector-Best, Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Dong H, Zhang K, Zhang J, Xiao Y, Zhang F, Wang M, Wang H, Zhao G, Xie S, Xie X, Hu W, Yin K, Gu L. A fast RT-qPCR system significantly shortens the time for SARS-CoV-2 nucleic acid test. Drug Discov Ther 2023; 17:37-44. [PMID: 36843076 DOI: 10.5582/ddt.2022.01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to global development. Rapid and accurate diagnosis is critical for containing the pandemic and treating patients in time. As the gold standard for SARS-CoV-2 diagnosis, the qualitative reverse transcription-PCR (RT-qPCR) test has long been criticized for its long detection time. In this study, we optimized the primers and probes targeting SARS-CoV-2 ORF1ab and N gene designed by the Chinese Center for Disease Control and Preventions (CDC) to increase their Tm values to meet the optimal elongation temperature of Taq DNA polymerase, thus greatly shortened the elongation time. The higher elongation temperature in turn narrowed the temperature range of the reaction and saved more time. In addition, by shortening the distance between the fluorophore at the 5' end and the quencher in the middle we got a probe with higher signal-to-noise ratio. Finally, by using all these measures and optimized RT-qPCR program we successfully reduced the time (nucleic acid extraction step is not included) for nucleic acid test from 74 min to 26 min.
Collapse
Affiliation(s)
- Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Yumeng Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Maofeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Shiling Xie
- Shandong Shtars Medical Technology Co. Ltd, Jinan, Shandong, China
| | - Xiaohong Xie
- Shandong Shtars Medical Technology Co. Ltd, Jinan, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Huber LB, Betz K, Marx A. Reverse Transcriptases: From Discovery and Applications to Xenobiology. Chembiochem 2023; 24:e202200521. [PMID: 36354312 DOI: 10.1002/cbic.202200521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Reverse transcriptases are DNA polymerases that can use RNA as a template for DNA synthesis. They thus catalyze the reverse of transcription. Although discovered in 1970, reverse transcriptases are still of great interest and are constantly being further developed for numerous modern research approaches. They are frequently used in biotechnological and molecular diagnostic applications. In this review, we describe the discovery of these fascinating enzymes and summarize research results and applications ranging from molecular cloning, direct virus detection, and modern sequencing methods to xenobiology.
Collapse
Affiliation(s)
- Luisa B Huber
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| |
Collapse
|
4
|
Yasukawa K, Yanagihara I, Fujiwara S. Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 2020; 46:1633-1643. [PMID: 33000189 PMCID: PMC7521554 DOI: 10.3892/ijmm.2020.4726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of polymerase chain reaction (PCR) in 1985, several methods have been developed to achieve nucleic acid amplification, and are currently used in various fields including clinical diagnosis and life science research. Thus, a wealth of information has accumulated regarding nucleic acid-related enzymes. In this review, some nucleic acid-related enzymes were selected and the recent advances in their modification along with their application to nucleic acid amplification were described. The discussion also focused on optimization of the corresponding reaction conditions. Using newly developed enzymes under well-optimized reaction conditions, the sensitivity, specificity, and fidelity of nucleic acid tests can be improved successfully.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan
| |
Collapse
|
5
|
Abstract
We report here crystal structures of a reverse transcriptase RTX, which was evolved in vitro from the B family polymerase KOD, in complex with either a DNA duplex or an RNA-DNA hybrid. Compared with the apo, binary, and ternary complex structures of the original KOD polymerase, the 16 substitutions that result in the function of copying RNA to DNA do not change the overall protein structure. Only six substitutions occur at the substrate-binding surface, and the others change domain-domain interfaces in the polymerase to enable RNA-DNA hybrid binding and reverse transcription. Most notably, F587L at the Palm and Thumb interface stabilizes the open and apo conformation of the Thumb. The intrinsically flexible Thumb domain seems to play a major role in accommodating the RNA-DNA hybrid product distal to the active site. This is reminiscent of naturally occurring RNA-dependent DNA polymerases, including telomerase, which have a dramatically augmented Thumb domain, and of reverse transcriptase, which extends its Thumb with the RNase H domain.
Collapse
|
6
|
Heller RC, Chung S, Crissy K, Dumas K, Schuster D, Schoenfeld TW. Engineering of a thermostable viral polymerase using metagenome-derived diversity for highly sensitive and specific RT-PCR. Nucleic Acids Res 2019; 47:3619-3630. [PMID: 30767012 PMCID: PMC6468311 DOI: 10.1093/nar/gkz104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/02/2022] Open
Abstract
Reverse transcription is an essential initial step in the analysis of RNA for most PCR-based amplification and detection methods. Despite advancements in these technologies, efficient conversion of RNAs that form stable secondary structures and double-stranded RNA targets remains challenging as retroviral-derived reverse transcriptases are often not sufficiently thermostable to catalyze synthesis at temperatures high enough to completely relax these structures. Here we describe the engineering and improvement of a thermostable viral family A polymerase with inherent reverse transcriptase activity for use in RT-PCR. Using the 3173 PyroPhage polymerase, previously identified from hot spring metagenomic sampling, and additional thermostable orthologs as a source of natural diversity, we used gene shuffling for library generation and screened for novel variants that retain high thermostability and display elevated reverse transcriptase activity. We then created a fusion enzyme between a high-performing variant polymerase and the 5′→3′ nuclease domain of Taq DNA polymerase that provided compatibility with probe-based detection chemistries and enabled highly sensitive detection of structured RNA targets. This technology enables a flexible single-enzyme RT-PCR system that has several advantages compared with standard heat-labile reverse transcription methods.
Collapse
Affiliation(s)
- Ryan C Heller
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Suhman Chung
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Katarzyna Crissy
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Kyle Dumas
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - David Schuster
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Thomas W Schoenfeld
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| |
Collapse
|
7
|
Identification of Thermus aquaticus DNA polymerase variants with increased mismatch discrimination and reverse transcriptase activity from a smart enzyme mutant library. Sci Rep 2019; 9:590. [PMID: 30679705 PMCID: PMC6345897 DOI: 10.1038/s41598-018-37233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
DNA polymerases the key enzymes for several biotechnological applications. Obviously, nature has not evolved these enzymes to be compatible with applications in biotechnology. Thus, engineering of a natural scaffold of DNA polymerases may lead to enzymes improved for several applications. Here, we investigated a two-step approach for the design and construction of a combinatorial library of mutants of KlenTaq DNA polymerase. First, we selected amino acid sites for saturation mutagenesis that interact with the primer/template strands or are evolutionarily conserved. From this library, we identified mutations that little interfere with DNA polymerase activity. Next, these functionally active mutants were combined randomly to construct a second library with enriched sequence diversity. We reasoned that the combination of mutants that have minuscule effect on enzyme activity and thermostability, will result in entities that have an increased mutation load but still retain activity. Besides activity and thermostability, we screened the library for entities with two distinct properties. Indeed, we identified two different KlenTaq DNA polymerase variants that either exhibit increased mismatch extension discrimination or increased reverse transcription PCR activity, respectively.
Collapse
|
8
|
Dong J, Chen G, Wang W, Huang X, Peng H, Pu Q, Du F, Cui X, Deng Y, Tang Z. Colorimetric PCR-Based microRNA Detection Method Based on Small Organic Dye and Single Enzyme. Anal Chem 2018; 90:7107-7111. [PMID: 29847923 DOI: 10.1021/acs.analchem.8b01111] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
microRNAs (miRNAs) have been a class of promising disease diagnostic biomarkers and therapeutic targets for their important biological functions. However, because of the high homology, interference from precursors (pri-miRNA, pre-miRNA), as well as limitations in the current assay technologies, it poses high demand and challenge for a specific, efficient, and economic miRNA assay method. Here, we propose a new miRNA detection method based on a label-free probe and a small organic dye with sequence dependence, realizing the sequence-specific and colorimetric detection of target miRNA. What is pleasantly surprising, only one enzyme is enough to propel the whole miRNA assay process, greatly simplifying the reaction component and detection process. Together with PCR amplification for the high enough sensitivity and three checks for specificity control, a detection limit of 5 fM was obtained and even one mutation could be discriminated visually. Overall, the new method makes much progress in convenience and economy of PCR-based miRNA assay method so that miRNA assay is going to be more friendly and affordable.
Collapse
Affiliation(s)
- Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Wei Wang
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Huipan Peng
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Qinlin Pu
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| | - Yun Deng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resource , Chengdu University of TCM , Chengdu 611137 , PR China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology , Chinese Academy of Science , Sichuan , Chengdu 610041 , PR China
| |
Collapse
|
9
|
Chovancova P, Merk V, Marx A, Leist M, Kranaster R. Reverse-transcription quantitative PCR directly from cells without RNA extraction and without isothermal reverse-transcription: a 'zero-step' RT-qPCR protocol. Biol Methods Protoc 2017; 2:bpx008. [PMID: 32002469 PMCID: PMC6977950 DOI: 10.1093/biomethods/bpx008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
We describe an ultra-rapid and sensitive method to quantify gene expression levels in
cultured cells. The procedure is based on reverse-transcription quantitative PCR (RT-qPCR)
directly from cells, without RNA extraction and without an isothermal
reverse-transcription step. Human neurons (Lund human mesencephalic cells) were lysed at
different stages of differentiation, and the lysates were used directly as template for
the combined RT-qPCR reaction. We detected a down-regulation of a proliferation marker and
an up-regulation of neuronal dopaminergic genes expression. We were able to detect the
reference gene target from as few as a single cell, demonstrating the application of the
method for efficient amplification from small cell numbers. The data were fully in line
with those obtained by the standard two-step RT-qPCR from the extracted total RNA. Our
‘zero-step’ RT-qPCR method proved to be simple and reliable with a total time from cell
lysis to the end of the qPCR as short as 1.5 h. It is therefore particularly suitable for
RT-qPCRs where large numbers of samples must be handled, or where data are required within
short time.
Collapse
Affiliation(s)
- Petra Chovancova
- In vitro Toxicology and Biomedicine, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Verena Merk
- myPOLS Biotec GmbH, D-78457 Konstanz, Germany
| | - Andreas Marx
- myPOLS Biotec GmbH, D-78457 Konstanz, Germany.,Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
10
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
11
|
Affiliation(s)
| | - Andreas Manz
- KIST Europe, Campus E7.1, 66123 Saarbrücken, Germany
| | - Pavel Neužil
- Northwestern Polytechnical University (NPU), School of
Mechanical Engineering, Department of Microsystem Engineering, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
- Brno University of Technology, Central European Institute of Technology (CEITEC) and Faculty of Electrical Engineering and Communication (FEEC), Antonínská 548/1, CZ-601
90 Brno, Czech Republic
| |
Collapse
|
12
|
Faye O, Faye O, Soropogui B, Patel P, El Wahed AA, Loucoubar C, Fall G, Kiory D, Magassouba N, Keita S, Kondé MK, Diallo AA, Koivogui L, Karlberg H, Mirazimi A, Nentwich O, Piepenburg O, Niedrig M, Weidmann M, Sall AA. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Euro Surveill 2015; 20:30053. [DOI: 10.2807/1560-7917.es.2015.20.44.30053] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 01/24/2023] Open
Abstract
In the absence of a vaccine or specific treatments for Ebola virus disease (EVD), early identification of cases is crucial for the control of EVD epidemics. We evaluated a new extraction kit (SpeedXtract (SE), Qiagen) on sera and swabs in combination with an improved diagnostic reverse transcription recombinase polymerase amplification assay for the detection of Ebola virus (EBOV-RT-RPA). The performance of combined extraction and detection was best for swabs. Sensitivity and specificity of the combined SE and EBOV-RT-RPA were tested in a mobile laboratory consisting of a mobile glovebox and a Diagnostics-in-a-Suitcase powered by a battery and solar panel, deployed to Matoto Conakry, Guinea as part of the reinforced surveillance strategy in April 2015 to reach the goal of zero cases. The EBOV-RT-RPA was evaluated in comparison to two real-time PCR assays. Of 928 post-mortem swabs, 120 tested positive, and the combined SE and EBOV-RT-RPA yielded a sensitivity and specificity of 100% in reference to one real-time RT-PCR assay. Another widely used real-time RT-PCR was much less sensitive than expected. Results were provided very fast within 30 to 60 min, and the field deployment of the mobile laboratory helped improve burial management and community engagement.
Collapse
Affiliation(s)
- Oumar Faye
- Arbovirus and viral hemorragic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
- These authors contributed equally to the paper
| | - Ousmane Faye
- Arbovirus and viral hemorragic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
- These authors contributed equally to the paper
| | - Barré Soropogui
- Laboratory for Hemorrhagic fevers of Guinea, Conakry, Guinea
| | - Pranav Patel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Ahmed Abd El Wahed
- Unit of Infection Models, German Primate Center, Goettingen, Germany, currently Division of Microbiology and Animal Hygiene, Georg-August-University, Goettingen, Germany
| | - Cheikh Loucoubar
- Group of Biostatistics, Bioinformatics and Modeling, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Arbovirus and viral hemorragic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Davy Kiory
- Arbovirus and viral hemorragic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
| | | | | | - Mandy Kader Kondé
- Center for Research and training on malaria and prioritary diseases (CEFORPAG), Conakry, Guinea
| | | | | | | | - Ali Mirazimi
- Public Health Agency of Sweden, Solna Sweden,
- Karolinska Institute, Solna, Sweden
| | - Oliver Nentwich
- TwistDx, Babraham Research Campus, Babraham, Cambridge, United Kingdom
| | - Olaf Piepenburg
- TwistDx, Babraham Research Campus, Babraham, Cambridge, United Kingdom
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Manfred Weidmann
- These authors contributed equally to the paper
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- These authors jointly supervised the project
| | - Amadou Alpha Sall
- Arbovirus and viral hemorragic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
- These authors contributed equally to the paper
- These authors jointly supervised the project
| |
Collapse
|
13
|
|
14
|
Drum M, Kranaster R, Ewald C, Blasczyk R, Marx A. Variants of a Thermus aquaticus DNA polymerase with increased selectivity for applications in allele- and methylation-specific amplification. PLoS One 2014; 9:e96640. [PMID: 24800860 PMCID: PMC4011760 DOI: 10.1371/journal.pone.0096640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/09/2014] [Indexed: 01/25/2023] Open
Abstract
The selectivity of DNA polymerases is crucial for many applications. For example, high discrimination between the extension of matched versus mismatched primer termini is desired for the detection of a single nucleotide variation at a particular locus within the genome. Here we describe the generation of thermostable mutants of the large fragment of Thermus aquaticus DNA polymerase (KlenTaq) with increased mismatch extension selectivity. In contrast to previously reported much less active KlenTaq mutants with mismatch discrimination abilities, many of the herein discovered mutants show conserved wild-type-like high activities. We demonstrate for one mutant containing the single amino acid exchange R660V the suitability for application in allele-specific amplifications directly from whole blood without prior sample purification. Also the suitability of the mutant for methylation specific amplification in the diagnostics of 5-methyl cytosines is demonstrated. Furthermore, the identified mutant supersedes other commercially available enzymes in human leukocyte antigen (HLA) analysis by sequence-specific primed polymerase chain reactions (PCRs).
Collapse
Affiliation(s)
- Matthias Drum
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Ramon Kranaster
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- myPOLS Biotec, University of Konstanz, Konstanz, Germany
| | - Christina Ewald
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
15
|
Du F, Streckenbach F, Chen H, Huang X, Tang Z, Marx A. RNA pathogen detection with one-step reverse transcription PCR and strand-displacement based signal amplification. Analyst 2013; 138:1544-8. [PMID: 23348105 DOI: 10.1039/c2an36688f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel detection method for RNA pathogens based on one-step reverse transcription PCR is introduced here. This method utilized the reverse transcriptase activity and the 5'-nuclease activity of TaqM1 DNA polymerase to transform target RNA into cDNA. The following PCR process released a fragment from the 5' end as a specific probe. Afterwards this fragment triggered a strand-displacement based signal amplification to release large amounts of G-quadruplex DNAzymes. All the probes applied in our method were unmodified DNA oligonucleotides. The detection results could be reported without sophisticated instruments either in the colorimetric way through oxidizing ABTS or in the fluorometric way by using tyramine as substrate. This approach could successfully detect HIV-1 in a blood sample and it has a linear concentration range of 6 fM to 60 pM.
Collapse
Affiliation(s)
- Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | | | | | | | | | | |
Collapse
|
16
|
Yasukawa K, Konishi A, Shinomura M, Nagaoka E, Fujiwara S. Kinetic analysis of reverse transcriptase activity of bacterial family A DNA polymerases. Biochem Biophys Res Commun 2012; 427:654-8. [PMID: 23026053 DOI: 10.1016/j.bbrc.2012.09.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/21/2012] [Indexed: 11/26/2022]
Abstract
Some bacterial thermostable, wild-type or genetically engineered family A DNA polymerases have reverse transcriptase activity. However, difference in reverse transcriptase activities of family A DNA polymerases and retroviral reverse transcriptases (RTs) is unclear. In this study, comparative kinetic analysis was performed for the reverse transcriptase activities of the wild-type enzyme of family A DNA polymerase (M1pol(WT)) from Thermus thermophilus M1 and the variant enzyme of family A DNA polymerase (K4pol(L329A)), in which the mutation of Leu329→Ala is undertaken, from Thermotoga petrophila K4. In the incorporation of dTTP into poly(rA)-p(dT)(45), the reaction rates of K4pol(L329A) and M1pol(WT) exhibited a saturated profile of the Michaelis-Menten kinetics for dTTP concentrations but a substrate inhibition profile for poly(rA)-p(dT)(45) concentrations. In contrast, the reaction rates of Moloney murine leukemia virus (MMLV) RT exhibited saturated profiles for both dTTP and poly(rA)-p(dT)(45) concentrations. This suggests that high concentrations of DNA-primed RNA template decrease the efficiency of cDNA synthesis with bacterial family A DNA polymerases.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
17
|
Baranauskas A, Paliksa S, Alzbutas G, Vaitkevicius M, Lubiene J, Letukiene V, Burinskas S, Sasnauskas G, Skirgaila R. Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel 2012; 25:657-68. [PMID: 22691702 DOI: 10.1093/protein/gzs034] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro synthesis of cDNA is one of the most important techniques in present molecular biology. Faithful synthesis of long cDNA on highly structured RNA templates requires thermostable and processive reverse transcriptases. In a recent attempt to increase the thermostability of the wt Moloney Murine leukemia virus reverse transcriptase (M-MuLV RT), we have employed the compartmentalized ribosome display (CRD) evolution in vitro technique and identified a large set of previously unknown mutations that enabled cDNA synthesis at elevated temperatures. In this study, we have characterized a group of the M-MuLV RT variants (28 novel amino acid positions, 84 point mutants) carrying the individual mutations. The performance of point mutants (thermal inactivation rate, substrate-binding affinity and processivity) correlated remarkably well with the mutation selection frequency in the CRD experiment. By combining the best-performing mutations D200N, L603W, T330P, L139P and E607K, we have generated highly processive and thermostable multiply-mutated M-MuLV RT variants. The processivity of the best-performing multiple mutant increased to 1500 nt (65-fold improvement in comparison to the wt enzyme), and the maximum temperature of the full-length 7.5-kb cDNA synthesis was raised to 62°C (17° higher in comparison with the wt enzyme).
Collapse
|
18
|
Maiti M, Siegmund V, Abramov M, Lescrinier E, Rosemeyer H, Froeyen M, Ramaswamy A, Ceulemans A, Marx A, Herdewijn P. Solution structure and conformational dynamics of deoxyxylonucleic acids (dXNA): an orthogonal nucleic acid candidate. Chemistry 2011; 18:869-79. [PMID: 22180030 DOI: 10.1002/chem.201102509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Indexed: 01/05/2023]
Abstract
Orthogonal nucleic acids are chemically modified nucleic acid polymers that are unable to transfer information with natural nucleic acids and thus can be used in synthetic biology to store and transfer genetic information independently. Recently, it was proposed that xylose-DNA (dXNA) can be considered to be a potential candidate for an orthogonal system. Herein, we present the structure in solution and conformational analysis of two self-complementary, fully modified dXNA oligonucleotides, as determined by CD and NMR spectroscopy. These studies are the initial experimental proof of the structural orthogonality of dXNAs. In aqueous solution, dXNA duplexes predominantly form a linear ladderlike (type-1) structure. This is the first example of a furanose nucleic acid that adopts a ladderlike structure. In the presence of salt, an equilibrium exists between two types of duplex form. The corresponding nucleoside triphosphates (dXNTPs) were synthesized and evaluated for their ability to be incorporated into a growing DNA chain by using several natural and mutant DNA polymerases. Despite the structural orthogonality of dXNA, DNA polymerase β mutant is able to incorporate the dXNTPs, showing DNA-dependent dXNA polymerase activity.
Collapse
Affiliation(s)
- Mohitosh Maiti
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sano S, Yamada Y, Shinkawa T, Kato S, Okada T, Higashibata H, Fujiwara S. Mutations to create thermostable reverse transcriptase with bacterial family A DNA polymerase from Thermotoga petrophila K4. J Biosci Bioeng 2011; 113:315-21. [PMID: 22143068 DOI: 10.1016/j.jbiosc.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
Family A DNA polymerase (K4PolI) from Thermotoga petrophila K4 was obtained as a recombinant form, and the enzyme characteristics were analyzed. K4PolI showed thermostable DNA-dependent DNA polymerase activity with 3'-5' exonuclease activity but no detectable RNA-dependent DNA polymerase activity. Its tertiary structure was speculated by in silico modeling to understand the binding situation between K4PolI and template DNA. Nine amino acids in the 3'-5' exonuclease domain are predicted to be involved in DNA/RNA distinction by steric interference with the 2' hydroxy group of ribose. To allow K4PolI to accept RNA as the template, mutants were constructed focusing on the amino acids located around the 2' hydroxyl group of the bound ribose. The mutants in which Thr326, Leu329, Gln384, Phe388, Met408, or Tyr438 was replaced with Ala (designated as T326A, L329A, Q384A, F388A, M408A, or Y438A, respectively) showed RNA-dependent DNA polymerase activity. All the mutants showed reduced 3'-5' exonuclease activity, suggesting that gain of reverse transcriptase activity is correlated with loss of 3'-5' exonuclease activity. In particular, the mutants enabled direct DNA amplification in a single tube format from structured RNA that was not efficiently amplified by retroviral reverse transcriptase.
Collapse
Affiliation(s)
- Sotaro Sano
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Jozwiakowski SK, Connolly BA. A modified family-B archaeal DNA polymerase with reverse transcriptase activity. Chembiochem 2011; 12:35-7. [PMID: 21117129 DOI: 10.1002/cbic.201000640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stanislaw K Jozwiakowski
- Institute of Cell and Molecular Bioscience (ICaMB), University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
21
|
Affiliation(s)
- Ramon Kranaster
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
22
|
Du F, Tang Z. Colorimetric Detection of PCR Product with DNAzymes Induced by 5′-Nuclease Activity of DNA Polymerases. Chembiochem 2010; 12:43-6. [DOI: 10.1002/cbic.201000650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Improved LNA probe-based assay for the detection of African and South American yellow fever virus strains. J Clin Virol 2010; 48:187-92. [PMID: 20556888 DOI: 10.1016/j.jcv.2010.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Real-time assays for Yellow fever virus (YFV) would help to improve acute diagnostics in outbreak investigations. OBJECTIVES To develop a real-time assay for YFV able to detect African and South American strains. STUDY DESIGN Three short probe (14-18 nt) formats were compared and a plasmid-transcribed RNA standard was used to test the performance of the assays. Additionally the new TaqM1 enzyme was tested. RESULTS A locked nucleotide probe (LNA probe) performed best with an analytical sensitivity of 10 RNA molecules detected. 44 African and 10 South American strains were detectable. One South American strain from 1984 had a one-nucleotide deviation in the hybridisation sequence for which the LNA probe had to be adapted. Comparison of enzymes revealed that not all enzymes are suitable for LNA probes. CONCLUSION The developed LNA probe based YFV real-time PCR performed best in an enzyme mix and less efficient using multifunctional enzymes.
Collapse
|