1
|
Lee S, Ju S, Kim SJ, Choi JO, Kim K, Kim D, Jeon ES, Lee C. tipNrich: A Tip-Based N-Terminal Proteome Enrichment Method. Anal Chem 2021; 93:14088-14098. [PMID: 34615347 DOI: 10.1021/acs.analchem.1c01722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mass spectrometry-based analysis of protein post-translational modifications requires large amounts of sample, complicating the analysis of samples with limited amounts of proteins such as clinical biopsies. Here, we present a tip-based N-terminal analysis method, tipNrich. The entire procedure is processed in a single pipette tip to minimize sample loss, which is so highly optimized to analyze small amounts of proteins, even femtomole-scale of a single protein. With tipNrich, we investigated various single proteins purified from different organisms using a low-resolution mass spectrometer and identified several N-terminal peptides with different Nt-modifications such as ragged N-termini. Furthermore, we applied matrix-assisted laser desorption ionization time-of-flight mass spectrometry to our method for shortening the analysis time. Moreover, we showed that our method could be utilized in disease diagnosis as exemplified by the characterization of wild-type transthyretin amyloidosis patients compared to the healthy individuals based on N-terminome profiling. In summary, tipNrich will satisfy the need of identifying N-terminal peptides even with highly scarce amounts of proteins and of having faster processing time to check the quality of protein products or to characterize N-terminal proteoform-related diseases.
Collapse
Affiliation(s)
- Seonjeong Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seok Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 02792, Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Jin-Oh Choi
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Kihyun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Darae Kim
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Komar AA. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. BIOCHEMISTRY (MOSCOW) 2021; 86:976-991. [PMID: 34488574 DOI: 10.1134/s0006297921080083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA. .,Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,DAPCEL, Inc., Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Abstract
Translation of the genetic information into proteins, performed by the ribosome, is a key cellular process in all organisms. Translation usually proceeds smoothly, but, unfortunately, undesirable events can lead to stalling of translating ribosomes. To rescue these faulty arrested ribosomes, bacterial cells possess three well-characterized quality control systems, tmRNA, ArfA, and ArfB. Recently, an additional ribosome rescue mechanism has been discovered in Bacillus subtilis. In contrast to the "canonical" systems targeting the 70S bacterial ribosome, this latter mechanism operates by first splitting the ribosome into the small (30S) and large (50S) subunits to then clearing the resultant jammed large subunit from the incomplete nascent polypeptide. Here, I will discuss the recent microbiological, biochemical, and structural data regarding functioning of this novel rescue system.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
4
|
Susorov D, Egri S, Korostelev AA. Termi-Luc: a versatile assay to monitor full-protein release from ribosomes. RNA (NEW YORK, N.Y.) 2020; 26:2044-2050. [PMID: 32817446 PMCID: PMC7668252 DOI: 10.1261/rna.076588.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Termination of protein biosynthesis is an essential step of gene expression, during which a complete functional protein is released from the ribosome. Premature or inefficient termination results in truncated, nonfunctional, or toxic proteins that may cause disease. Indeed, more than 10% of human genetic diseases are caused by nonsense mutations leading to premature termination. Efficient and sensitive approaches are required to study eukaryotic termination mechanisms and to identify potential therapeutics that modulate termination. Canonical radioactivity-based termination assays are complex, report on a short peptide release, and are incompatible with high-throughput screening. Here we describe a robust and simple in vitro assay to study the kinetics of full-protein release. The assay monitors luminescence upon release of nanoluciferase from a mammalian pretermination complex. The assay can be used to record time-progress curves of protein release in a high-throughput format, making it optimal for studying release kinetics and for high-throughput screening for small molecules that modulate the efficiency of termination.
Collapse
Affiliation(s)
- Denis Susorov
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Shawn Egri
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
5
|
Gaba A, Wang H, Qu X. An In Vitro Single-Molecule Imaging Assay for the Analysis of Cap-Dependent Translation Kinetics. J Vis Exp 2020. [PMID: 33016943 DOI: 10.3791/61648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cap-dependent protein synthesis is the predominant translation pathway in eukaryotic cells. While various biochemical and genetic approaches have allowed extensive studies of cap-dependent translation and its regulation, high resolution kinetic characterization of this translation pathway is still lacking. Recently, we developed an in vitro assay to measure cap-dependent translation kinetics with single-molecule resolution. The assay is based on fluorescently labeled antibody binding to nascent epitope-tagged polypeptide. By imaging the binding and dissociation of antibodies to and from nascent peptide-ribosome-mRNA complexes, the translation progression on individual mRNAs can be tracked. Here, we present a protocol for establishing this assay, including mRNA and PEGylated slide preparations, real-time imaging of translation, and analysis of single molecule trajectories. This assay enables tracking of individual cap-dependent translation events and resolves key translation kinetics, such as initiation and elongation rates. The assay can be widely applied to distinct translation systems and should broadly benefit in vitro studies of cap-dependent translation kinetics and translational control mechanisms.
Collapse
Affiliation(s)
- Anthony Gaba
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center
| | - Hongyun Wang
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center
| | - Xiaohui Qu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center;
| |
Collapse
|
6
|
Pellowe G, Findlay HE, Lee K, Gemeinhardt TM, Blackholly LR, Reading E, Booth PJ. Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies. Biochemistry 2020; 59:2764-2775. [PMID: 32627541 PMCID: PMC7551657 DOI: 10.1021/acs.biochem.0c00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Co-translational folding studies of membrane proteins lag behind cytosolic protein investigations largely due to the technical difficulty in maintaining membrane lipid environments for correct protein folding. Stalled ribosome-bound nascent chain complexes (RNCs) can give snapshots of a nascent protein chain as it emerges from the ribosome during biosynthesis. Here, we demonstrate how SecM-facilitated nascent chain stalling and native nanodisc technologies can be exploited to capture in vivo-generated membrane protein RNCs within their native lipid compositions. We reveal that a polytopic membrane protein can be successfully stalled at various stages during its synthesis and the resulting RNC extracted within either detergent micelles or diisobutylene-maleic acid co-polymer native nanodiscs. Our approaches offer tractable solutions for the structural and biophysical interrogation of nascent membrane proteins of specified lengths, as the elongating nascent chain emerges from the ribosome and inserts into its native lipid milieu.
Collapse
Affiliation(s)
- Grant
A. Pellowe
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Heather E. Findlay
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Karen Lee
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Tim M. Gemeinhardt
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Laura R. Blackholly
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Eamonn Reading
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Paula J. Booth
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
7
|
Wang H, Sun L, Gaba A, Qu X. An in vitro single-molecule assay for eukaryotic cap-dependent translation initiation kinetics. Nucleic Acids Res 2020; 48:e6. [PMID: 31722415 PMCID: PMC7145701 DOI: 10.1093/nar/gkz1066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic mRNAs are predominantly translated via the cap-dependent pathway. Initiation is a rate-limiting step in cap-dependent translation and is the main target of translational control mechanisms. There is a lack of high-resolution techniques for characterizing the cap-dependent initiation kinetics. Here, we report an in vitro single-molecule assay that allows characterization of both initiation and peptide chain elongation kinetics for cap-dependent translation. Surprisingly, the histogram of the first-round initiation time is highly asymmetrical and spans a large time range that is several-fold greater than the average peptide synthesis time in translation reactions with a firefly luciferase-encoding mRNA. Both the histogram and single-molecule trajectories reveal an unexpected high-degree of asynchrony in translation activity between mRNA molecules. Furthermore, by inserting a small stem-loop (ΔG = -4.8 kcal/mol) in the middle of the mRNA 5' untranslated region (UTR), our assay robustly detects small changes in budding yeast initiation kinetics, which could not be resolved by bulk luminescence kinetics. Lastly, we demonstrate the general applicability of this assay to distinct cell-free translation systems by using extracts prepared from budding yeast, wheat germ, and rabbit reticulocyte lysates. This assay should facilitate mechanistic studies of eukaryotic cap-dependent translation initiation and translational control.
Collapse
Affiliation(s)
- Hongyun Wang
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lexi Sun
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Anthony Gaba
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaohui Qu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Lorenzon-Ojea AR, Yung HW, Burton GJ, Bevilacqua E. The potential contribution of stromal cell-derived factor 2 (SDF2) in endoplasmic reticulum stress response in severe preeclampsia and labor-onset. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165386. [PMID: 30776414 DOI: 10.1016/j.bbadis.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum (ER) stress occurs when the protein folding machinery in the cell is unable to cope with newly synthesized proteins, which results in an accumulation of misfolded proteins in the ER lumen. In response, the cell activates a cellular signaling pathway known as the Unfolded Protein Response (UPR), aiming to restore cellular homeostasis. Activation and exacerbation of the UPR have been described in several human pathologies, including cancer and neurological disorders, and in some gestational diseases such as preeclampsia and gestational diabetes. This review explores the participation of stromal cell-derived factor 2 (SDF2) in UPR pathways, shows new information and discusses its exacerbation regarding protein expression in severe preeclampsia and labor, both of which are associated with ER stress.
Collapse
Affiliation(s)
- Aline R Lorenzon-Ojea
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, SP, Brazil.
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Estela Bevilacqua
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Winz ML, Peil L, Turowski TW, Rappsilber J, Tollervey D. Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control. Nat Commun 2019; 10:563. [PMID: 30718516 PMCID: PMC6362110 DOI: 10.1038/s41467-019-08382-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/21/2018] [Indexed: 01/28/2023] Open
Abstract
Ribosome-associated quality control (RQC) pathways monitor and respond to ribosome stalling. Using in vivo UV-crosslinking and mass spectrometry, we identified a C-terminal region in Hel2/Rqt1 as an RNA binding domain. Complementary crosslinking and sequencing data for Hel2 revealed binding to 18S rRNA and translated mRNAs. Hel2 preferentially bound mRNAs upstream and downstream of the stop codon. C-terminal truncation of Hel2 abolished the major 18S crosslink and polysome association, and altered mRNA binding. HEL2 deletion caused loss of RQC and, we report here, no-go decay (NGD), with comparable effects for Hel2 truncation including the RNA-binding site. Asc1 acts upstream of Hel2 in RQC and asc1∆ impaired Hel2 binding to 18S and mRNA. In conclusion: Hel2 is recruited or stabilized on translating 40S ribosomal subunits by interactions with 18S rRNA and Asc1. This 18S interaction is required for Hel2 function in RQC and NGD. Hel2 probably interacts with mRNA during translation termination. Ribosome-associated quality control (RQC) pathways monitor and respond to stalling of the translating ribosome. Here the authors show that the ribosome associated RQC factor Hel2/ZNF598, an E3 ubiquitin ligase, generally interacts with mRNAs in the vicinity of stop codons.
Collapse
Affiliation(s)
- Marie-Luise Winz
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland
| | - Lauri Peil
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland.,Institute of Technology, University of Tartu, Nooruse 150411, Tartu, Estonia
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland.
| |
Collapse
|
10
|
Abstract
A half century of studying protein folding in vitro and modeling it in silico has not provided us with a reliable computational method to predict the native conformations of proteins de novo, let alone identify the intermediates on their folding pathways. In this Opinion article, we suggest that the reason for this impasse is the over-reliance on current physical models of protein folding that are based on the assumption that proteins are able to fold spontaneously without assistance. These models arose from studies conducted in vitro on a biased sample of smaller, easier-to-isolate proteins, whose native structures appear to be thermodynamically stable. Meanwhile, the vast empirical data on the majority of larger proteins suggests that once these proteins are completely denatured in vitro, they cannot fold into native conformations without assistance. Moreover, they tend to lose their native conformations spontaneously and irreversibly in vitro, and therefore such conformations must be metastable. We propose a model of protein folding that is based on the notion that the folding of all proteins in the cell is mediated by the actions of the "protein folding machine" that includes the ribosome, various chaperones, and other components involved in co-translational or post-translational formation, maintenance and repair of protein native conformations in vivo. The most important and universal component of the protein folding machine consists of the ribosome in complex with the welcoming committee chaperones. The concerted actions of molecular machinery in the ribosome peptidyl transferase center, in the exit tunnel, and at the surface of the ribosome result in the application of mechanical and other forces to the nascent peptide, reducing its conformational entropy and possibly creating strain in the peptide backbone. The resulting high-energy conformation of the nascent peptide allows it to fold very fast and to overcome high kinetic barriers along the folding pathway. The early folding intermediates in vivo are stabilized by interactions with the ribosome and welcoming committee chaperones and would not be able to exist in vitro in the absence of such cellular components. In vitro experiments that unfold proteins by heat or chemical treatment produce denaturation ensembles that are very different from folding intermediates in vivo and therefore have very limited use in reconstructing the in vivo folding pathways. We conclude that computational modeling of protein folding should deemphasize the notion of unassisted thermodynamically controlled folding, and should focus instead on the step-by-step reverse engineering of the folding process as it actually occurs in vivo. REVIEWERS This article was reviewed by Eugene Koonin and Frank Eisenhaber.
Collapse
|
11
|
Houwman JA, van Mierlo CPM. Folding of proteins with a flavodoxin-like architecture. FEBS J 2017; 284:3145-3167. [PMID: 28380286 DOI: 10.1111/febs.14077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
The flavodoxin-like fold is a protein architecture that can be traced back to the universal ancestor of the three kingdoms of life. Many proteins share this α-β parallel topology and hence it is highly relevant to illuminate how they fold. Here, we review experiments and simulations concerning the folding of flavodoxins and CheY-like proteins, which share the flavodoxin-like fold. These polypeptides tend to temporarily misfold during unassisted folding to their functionally active forms. This susceptibility to frustration is caused by the more rapid formation of an α-helix compared to a β-sheet, particularly when a parallel β-sheet is involved. As a result, flavodoxin-like proteins form intermediates that are off-pathway to native protein and several of these species are molten globules (MGs). Experiments suggest that the off-pathway species are of helical nature and that flavodoxin-like proteins have a nonconserved transition state that determines the rate of productive folding. Folding of flavodoxin from Azotobacter vinelandii has been investigated extensively, enabling a schematic construction of its folding energy landscape. It is the only flavodoxin-like protein of which cotranslational folding has been probed. New insights that emphasize differences between in vivo and in vitro folding energy landscapes are emerging: the ribosome modulates MG formation in nascent apoflavodoxin and forces this polypeptide toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University and Research, The Netherlands
| | | |
Collapse
|
12
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
13
|
Konovalova S, Hilander T, Loayza-Puch F, Rooijers K, Agami R, Tyynismaa H. Exposure to arginine analog canavanine induces aberrant mitochondrial translation products, mitoribosome stalling, and instability of the mitochondrial proteome. Int J Biochem Cell Biol 2015; 65:268-74. [DOI: 10.1016/j.biocel.2015.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|
14
|
Froese DS, Michaeli A, McCorvie TJ, Krojer T, Sasi M, Melaev E, Goldblum A, Zatsepin M, Lossos A, Álvarez R, Escribá PV, Minassian BA, von Delft F, Kakhlon O, Yue WW. Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design. Hum Mol Genet 2015. [PMID: 26199317 PMCID: PMC4581599 DOI: 10.1093/hmg/ddv280] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.
Collapse
Affiliation(s)
- D Sean Froese
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | | | - Thomas J McCorvie
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Tobias Krojer
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Meitav Sasi
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Esther Melaev
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Amiram Goldblum
- Pepticom LTD, Jerusalem, Israel, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Lossos
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Rafael Álvarez
- Department of Biology, University of the Balearic Islands, Palma de Mallorca E-07122, Spain and
| | - Pablo V Escribá
- Department of Biology, University of the Balearic Islands, Palma de Mallorca E-07122, Spain and
| | - Berge A Minassian
- Program in Genetics and Genomic Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Frank von Delft
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel,
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK,
| |
Collapse
|
15
|
Abstract
Owing to the degeneracy of the genetic code, a protein sequence can be encoded by many different synonymous mRNA coding sequences. Synonymous codon usage was once thought to be functionally neutral, but evidence now indicates it is shaped by evolutionary selection and affects other aspects of protein biogenesis beyond specifying the amino acid sequence of the protein. Synonymous rare codons, once thought to have only negative impacts on the speed and accuracy of translation, are now known to play an important role in diverse functions, including regulation of cotranslational folding, covalent modifications, secretion, and expression level. Mutations altering synonymous codon usage are linked to human diseases. However, much remains unknown about the molecular mechanisms connecting synonymous codon usage to efficient protein biogenesis and proper cell physiology. Here we review recent literature on the functional effects of codon usage, including bioinformatics approaches aimed at identifying general roles for synonymous codon usage.
Collapse
|
16
|
Oßwald C, Zipf G, Schmidt G, Maier J, Bernauer HS, Müller R, Wenzel SC. Modular construction of a functional artificial epothilone polyketide pathway. ACS Synth Biol 2014; 3:759-72. [PMID: 23654254 DOI: 10.1021/sb300080t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Natural products of microbial origin continue to be an important source of pharmaceuticals and agrochemicals exhibiting potent activities and often novel modes of action. Due to their inherent structural complexity chemical synthesis is often hardly possible, leaving fermentation as the only viable production route. In addition, the pharmaceutical properties of natural products often need to be optimized for application by sophisticated medicinal chemistry and/or biosynthetic engineering. The latter requires a detailed understanding of the biosynthetic process and genetic tools to modify the producing organism that are often unavailable. Consequently, heterologous expression of complex natural product pathways has been in the focus of development over recent years. However, piecing together existing DNA cloned from natural sources and achieving efficient expression in heterologous circuits represent several limitations that can be addressed by synthetic biology. In this work we have redesigned and reassembled the 56 kb epothilone biosynthetic gene cluster from Sorangium cellulosum for expression in the high GC host Myxococcus xanthus. The codon composition was adapted to a modified codon table for M. xanthus, and unique restriction sites were simultaneously introduced and others eliminated from the sequence in order to permit pathway assembly and future interchangeability of modular building blocks from the epothilone megasynthetase. The functionality of the artificial pathway was demonstrated by successful heterologous epothilone production in M. xanthus at significant yields that have to be improved in upcoming work. Our study sets the stage for future engineering of epothilone biosynthesis and production optimization using a highly flexible assembly strategy.
Collapse
Affiliation(s)
- Corina Oßwald
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken,
Germany
| | | | | | - Josef Maier
- IStLS, Information Services to Life Science, Oberndorf a.N., Germany
| | | | - Rolf Müller
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken,
Germany
| | - Silke C. Wenzel
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken,
Germany
| |
Collapse
|
17
|
|
18
|
Komar AA. "Naked" FACT is unstable. Cell Cycle 2013; 12:2347. [PMID: 23856583 PMCID: PMC3841312 DOI: 10.4161/cc.25661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease; Department of Biological, Geological and Environmental Sciences; Cleveland State University; Cleveland, OH USA
| |
Collapse
|
19
|
Degradation of newly synthesized polypeptides by ribosome-associated RACK1/c-Jun N-terminal kinase/eukaryotic elongation factor 1A2 complex. Mol Cell Biol 2013; 33:2510-26. [PMID: 23608534 DOI: 10.1128/mcb.01362-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Folding of newly synthesized polypeptides (NSPs) into functional proteins is a highly regulated process. Rigorous quality control ensures that NSPs attain their native fold during or shortly after completion of translation. Nonetheless, signaling pathways that govern the degradation of NSPs in mammals remain elusive. We demonstrate that the stress-induced c-Jun N-terminal kinase (JNK) is recruited to ribosomes by the receptor for activated protein C kinase 1 (RACK1). RACK1 is an integral component of the 40S ribosome and an adaptor for protein kinases. Ribosome-associated JNK phosphorylates the eukaryotic translation elongation factor 1A isoform 2 (eEF1A2) on serines 205 and 358 to promote degradation of NSPs by the proteasome. These findings establish a role for a RACK1/JNK/eEF1A2 complex in the quality control of NSPs in response to stress.
Collapse
|
20
|
The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control. ISRN MOLECULAR BIOLOGY 2013; 2013:548359. [PMID: 27335678 PMCID: PMC4890865 DOI: 10.1155/2013/548359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/21/2012] [Indexed: 12/02/2022]
Abstract
The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins.
Collapse
|
21
|
Long AR, O'Brien CC, Alder NN. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner. PLoS One 2012; 7:e46332. [PMID: 23050015 PMCID: PMC3457961 DOI: 10.1371/journal.pone.0046332] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023] Open
Abstract
The ADP/ATP Carrier (AAC) is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids.
Collapse
Affiliation(s)
- Ashley R. Long
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Catherine C. O'Brien
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
22
|
Jha SS, Komar AA. Isolation of ribosome bound nascent polypeptides in vitro to identify translational pause sites along mRNA. J Vis Exp 2012:4026. [PMID: 22806127 DOI: 10.3791/4026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The rate of translational elongation is non-uniform. mRNA secondary structure, codon usage and mRNA associated proteins may alter ribosome movement on the message(for review see 1). However, it's now widely accepted that synonymous codon usage is the primary cause of non-uniform translational elongation rates(1). Synonymous codons are not used with identical frequency. A bias exists in the use of synonymous codons with some codons used more frequently than others(2). Codon bias is organism as well as tissue specific(2,3). Moreover, frequency of codon usage is directly proportional to the concentrations of cognate tRNAs(4). Thus, a frequently used codon will have higher multitude of corresponding tRNAs, which further implies that a frequent codon will be translated faster than an infrequent one. Thus, regions on mRNA enriched in rare codons (potential pause sites) will as a rule slow down ribosome movement on the message and cause accumulation of nascent peptides of the respective sizes(5-8). These pause sites can have functional impact on the protein expression, mRNA stability and protein folding(for review see 9). Indeed, it was shown that alleviation of such pause sites can alter ribosome movement on mRNA and subsequently may affect the efficiency of co-translational (in vivo) protein folding(1,7,10,11). To understand the process of protein folding in vivo, in the cell, that is ultimately coupled to the process of protein synthesis it is essential to gain comprehensive insights into the impact of codon usage/tRNA content on the movement of ribosomes along mRNA during translational elongation. Here we describe a simple technique that can be used to locate major translation pause sites for a given mRNA translated in various cell-free systems(6-8). This procedure is based on isolation of nascent polypeptides accumulating on ribosomes during in vitro translation of a target mRNA. The rationale is that at low-frequency codons, the increase in the residence time of the ribosomes results in increased amounts of nascent peptides of the corresponding sizes. In vitro transcribed mRNA is used for in vitro translational reactions in the presence of radioactively labeled amino acids to allow the detection of the nascent chains. In order to isolate ribosome bound nascent polypeptide complexes the translation reaction is layered on top of 30% glycerol solution followed by centrifugation. Nascent polypeptides in polysomal pellet are further treated with ribonuclease A and resolved by SDS PAGE. This technique can be potentially used for any protein and allows analysis of ribosome movement along mRNA and the detection of the major pause sites. Additionally, this protocol can be adapted to study factors and conditions that can alter ribosome movement and thus potentially can also alter the function/conformation of the protein.
Collapse
Affiliation(s)
- Sujata S Jha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, OH, USA
| | | |
Collapse
|
23
|
Braselmann E, Clark PL. Autotransporters: The Cellular Environment Reshapes a Folding Mechanism to Promote Protein Transport. J Phys Chem Lett 2012; 3:1063-1071. [PMID: 23687560 PMCID: PMC3654826 DOI: 10.1021/jz201654k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We know very little about how the cellular environment affects protein folding mechanisms. Here, we focus on one unique aspect of that environment that is difficult to recapitulate in the test tube: the effect of a folding vector. When protein folding is initiated at one end of the polypeptide chain, folding starts from a much smaller ensemble of conformations than during refolding of a full-length polypeptide chain. But to what extent can vectorial folding affect protein folding kinetics and the conformations of folding intermediates? We focus on recent studies of autotransporter proteins, the largest class of virulence proteins from pathogenic Gram-negative bacteria. Autotransporter proteins are secreted across the bacterial inner membrane from N→C-terminus, which, like refolding in vitro, retards folding. But in contrast, upon C→N-terminal secretion across the outer membrane autotransporter folding proceeds orders of magnitude faster. The potential impact of vectorial folding on the folding mechanisms of other proteins is also discussed.
Collapse
Affiliation(s)
| | - Patricia L. Clark
- To whom correspondence should be addressed: , (574)631-8353 [phone], (574)631-6652 [fax]
| |
Collapse
|
24
|
Chartier M, Gaudreault F, Najmanovich R. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. ACTA ACUST UNITED AC 2012; 28:1438-45. [PMID: 22467916 DOI: 10.1093/bioinformatics/bts149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MOTIVATION An increasing amount of evidence from experimental and computational analysis suggests that rare codon clusters are functionally important for protein activity. Most of the studies on rare codon clusters were performed on a limited number of proteins or protein families. In the present study, we present the Sherlocc program and how it can be used for large scale protein family analysis of evolutionarily conserved rare codon clusters and their relation to protein function and structure. This large-scale analysis was performed using the whole Pfam database covering over 70% of the known protein sequence universe. Our program Sherlocc, detects statistically relevant conserved rare codon clusters and produces a user-friendly HTML output. RESULTS Statistically significant rare codon clusters were detected in a multitude of Pfam protein families. The most statistically significant rare codon clusters were predominantly identified in N-terminal Pfam families. Many of the longest rare codon clusters are found in membrane-related proteins which are required to interact with other proteins as part of their function, for example in targeting or insertion. We identified some cases where rare codon clusters can play a regulating role in the folding of catalytically important domains. Our results support the existence of a widespread functional role for rare codon clusters across species. Finally, we developed an online filter-based search interface that provides access to Sherlocc results for all Pfam families. AVAILABILITY The Sherlocc program and search interface are open access and are available at http://bcb.med.usherbrooke.ca
Collapse
Affiliation(s)
- Matthieu Chartier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
25
|
Jungbauer A, Lee SY. Editorial: Breaking down the walls to achieve interdisciplinary science and engineering. Biotechnol J 2012; 7:4-5. [DOI: 10.1002/biot.201100484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Abstract
G protein signaling depends on the ability of the individual subunits of the G protein heterotrimer to assemble into functional complexes. Formation of the G protein βγ (Gβγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings the Gβ and Gγ subunits together. This system includes the cytosolic chaperonin containing TCP-1 (CCT) and its co-chaperone phosducin-like protein 1 (PhLP1). CCT assists Gβ in achieving its β-propeller structure, while PhLP1 releases Gβ from CCT and facilitates its interaction with Gγ. Once Gβγ is formed, PhLP1 remains bound until it is displaced by the Gα subunit and the G protein heterotrimer is brought together. Another obligate dimer is the complex between the G protein β(5) subunit and a regulator of G protein signaling protein (Gβ(5)-RGS). Gβ(5)-RGS also requires CCT for Gβ(5) folding, but PhLP1 plays a different role. It stabilizes the interaction between Gβ(5) and CCT, perhaps to increase folding efficiency. After Gβ(5) folding PhLP1 must subsequently release, allowing the RGS protein to bind and form the Gβ(5)-RGS dimer directly on CCT. Gβ(5)-RGS is then freed from CCT to interact with its membrane anchoring protein and form a stable complex that turns off the G protein signal by catalyzing GTP hydrolysis on Gα.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA,
| | | |
Collapse
|
27
|
Gomes MPB, Vieira TCRG, Cordeiro Y, Silva JL. The role of RNA in mammalian prion protein conversion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:415-28. [PMID: 22095764 DOI: 10.1002/wrna.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrP(Sc), the infectious and alternatively folded form of the PrP prion protein, is capable of self-replication, using PrP(C), the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion-based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non-coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA-binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy.
Collapse
Affiliation(s)
- Mariana P B Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
28
|
Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 2011; 12:683-91. [PMID: 21878961 DOI: 10.1038/nrg3051] [Citation(s) in RCA: 693] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synonymous mutations - sometimes called 'silent' mutations - are now widely acknowledged to be able to cause changes in protein expression, conformation and function. The recent increase in knowledge about the association of genetic variants with disease, particularly through genome-wide association studies, has revealed a substantial contribution of synonymous SNPs to human disease risk and other complex traits. Here we review current understanding of the extent to which synonymous mutations influence disease, the various molecular mechanisms that underlie these effects and the implications for future research and biomedical applications.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
29
|
BiotecVisions 2011, July. Biotechnol J 2011. [DOI: 10.1002/biot.201100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|