1
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Stano P, Tsumoto K. Membranous and Membraneless Interfaces-Origins of Artificial Cellular Complexity. Life (Basel) 2023; 13:1594. [PMID: 37511969 PMCID: PMC10381752 DOI: 10.3390/life13071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Living cell architecture is based on the concept of micro-compartmentation at different hierarchical levels [...].
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| |
Collapse
|
3
|
Shimokawa N, Hamada T. Physical Concept to Explain the Regulation of Lipid Membrane Phase Separation under Isothermal Conditions. Life (Basel) 2023; 13:life13051105. [PMID: 37240749 DOI: 10.3390/life13051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Lateral phase separation within lipid bilayer membranes has attracted considerable attention in the fields of biophysics and cell biology. Living cells organize laterally segregated compartments, such as raft domains in an ordered phase, and regulate their dynamic structures under isothermal conditions to promote cellular functions. Model membrane systems with minimum components are powerful tools for investigating the basic phenomena of membrane phase separation. With the use of such model systems, several physicochemical characteristics of phase separation have been revealed. This review focuses on the isothermal triggering of membrane phase separation from a physical point of view. We consider the free energy of the membrane that describes lateral phase separation and explain the experimental results of model membranes to regulate domain formation under isothermal conditions. Three possible regulation factors are discussed: electrostatic interactions, chemical reactions and membrane tension. These findings may contribute to a better understanding of membrane lateral organization within living cells that function under isothermal conditions and could be useful for the development of artificial cell engineering.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| |
Collapse
|
4
|
Huang J, Gambietz S, Saccà B. Self-Assembled Artificial DNA Nanocompartments and Their Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202253. [PMID: 35775957 DOI: 10.1002/smll.202202253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization is the strategy evolved by nature to control reactions in space and time. The ability to emulate this strategy through synthetic compartmentalization systems has rapidly evolved in the past years, accompanied by an increasing understanding of the effects of spatial confinement on the thermodynamic and kinetic properties of the guest molecules. DNA nanotechnology has played a pivotal role in this scientific endeavor and is still one of the most promising approaches for the construction of nanocompartments with programmable structural features and nanometer-scaled addressability. In this review, the design approaches, bioapplications, and theoretical frameworks of self-assembled DNA nanocompartments are surveyed. From DNA polyhedral cages to virus-like capsules, the construction principles of such intriguing architectures are illustrated. Various applications of DNA nanocompartments, including their use for programmable enzyme scaffolding, single-molecule studies, biosensing, and as artificial nanofactories, ending with an ample description of DNA nanocages for biomedical purposes, are then reported. Finally, the theoretical hypotheses that make DNA nanocompartments, and nanosystems in general, a topic of great interest in modern science, are described and the progresses that have been done until now in the comprehension of the peculiar phenomena that occur within nanosized environments are summarized.
Collapse
Affiliation(s)
- Jing Huang
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Sabrina Gambietz
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Barbara Saccà
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
5
|
Laos R, Benner S. Fluorinated oil-surfactant mixtures with the density of water: Artificial cells for synthetic biology. PLoS One 2022; 17:e0252361. [PMID: 35051170 PMCID: PMC8775225 DOI: 10.1371/journal.pone.0252361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
There is a rising interest in biotechnology for the compartmentalization of biochemical reactions in water droplets. Several applications, such as the widely used digital PCR, seek to encapsulate a single molecule in a droplet to be amplified. Directed evolution, another technology with growing popularity, seeks to replicate what happens in nature by encapsulating a single gene and the protein encoded by this gene, linking genotype with phenotype. Compartmentalizing reactions in droplets also allows the experimentalist to run millions of different reactions in parallel. Compartmentalization requires a fluid that is immiscible with water and a surfactant to stabilize the droplets. While there are fluids and surfactants on the market that have been used to accomplish encapsulation, there are reported concerns with these. Span® 80, for example, a commonly used surfactant, has contaminants that interfere with various biochemical reactions. Similarly, synthetic fluids distributed by the cosmetic industry allow some researchers to produce experimental results that can be published, but then other researchers fail to reproduce some of these protocols due to the unreliable nature of these products, which are not manufactured with the intent of being used in biotechnology. The most reliable fluids, immiscible with water and suitable for biochemical reactions, are fluorinated fluids. Fluorinated compounds have the peculiar characteristic of being immiscible with water while at the same time not mixing with hydrophobic molecules. This peculiar characteristic has made fluorinated fluids attractive because it seems to be the basis of their being biologically inert. However, commercially available fluorinated fluids have densities between 1.4 to 1.6 g/mL. The higher-than-water density of fluorinated oils complicates handling of the droplets since these would float on the fluid since the water droplets would be less dense. This can cause aggregation and coalescence of the droplets. Here, we report the synthesis, characterization, and use of fluorinated polysiloxane oils that have densities similar to the one of water at room temperature, and when mixed with non-ionic fluorinated surfactants, can produce droplets encapsulating biochemical reactions. We show how droplets in these emulsions can host many biological processes, including PCR, DNA origami, rolling circle amplification (RCA), and Taqman® assays. Some of these use unnatural DNA built from an Artificially Expanded Genetic Information System (AEGIS) with six nucleotide "letters".
Collapse
Affiliation(s)
- Roberto Laos
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
- Panamerican Biolabs LLC, Gainesville, Florida, United States of America
| | - Steven Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| |
Collapse
|
6
|
Ohnishi S, Kamiya K. Formation of Giant Lipid Vesicle Containing Dual Functions Facilitates Outer Membrane Phospholipase. ACS Synth Biol 2021; 10:1837-1846. [PMID: 34258991 DOI: 10.1021/acssynbio.0c00468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Giant lipid vesicles are used to study artificial cell models, as well as the encapsulation of biomolecules, and the reconstitution of membrane proteins on these vesicles. Recently, complex reactions in giant vesicles have been controlled by reconstituting numerous kinds of biomolecules. However, it is challenging to generate giant lipid vesicles containing a diverse set of proteins at concentrations sufficient to ensure proper functioning. Here, we describe an artificial cell model showing dual functions of small molecule transportation and small vesicle budding, using a dual functional membrane protein (transportation and phosphatase activity) called the outer membrane phospholipase (OmpLA). To the best of our knowledge, we have revealed for the first time the transportation of ions or small molecules through OmpLA on the charged lipid bilayer. The lipid composition controlled the orientation of OmpLA through proteinase K digestion. Finally, OmpLA enzyme activity of phospholipid hydrolysis caused the budding of small vesicles.
Collapse
Affiliation(s)
- Seren Ohnishi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
7
|
Kamiya K. Development of Artificial Cell Models Using Microfluidic Technology and Synthetic Biology. MICROMACHINES 2020; 11:E559. [PMID: 32486297 PMCID: PMC7345299 DOI: 10.3390/mi11060559] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Giant lipid vesicles or liposomes are primarily composed of phospholipids and form a lipid bilayer structurally similar to that of the cell membrane. These vesicles, like living cells, are 5-100 μm in diameter and can be easily observed using an optical microscope. As their biophysical and biochemical properties are similar to those of the cell membrane, they serve as model cell membranes for the investigation of the biophysical or biochemical properties of the lipid bilayer, as well as its dynamics and structure. Investigation of membrane protein functions and enzyme reactions has revealed the presence of soluble or membrane proteins integrated in the giant lipid vesicles. Recent developments in microfluidic technologies and synthetic biology have enabled the development of well-defined artificial cell models with complex reactions based on the giant lipid vesicles. In this review, using microfluidics, the formations of giant lipid vesicles with asymmetric lipid membranes or complex structures have been described. Subsequently, the roles of these biomaterials in the creation of artificial cell models including nanopores, ion channels, and other membrane and soluble proteins have been discussed. Finally, the complex biological functions of giant lipid vesicles reconstituted with various types of biomolecules has been communicated. These complex artificial cell models contribute to the production of minimal cells or protocells for generating valuable or rare biomolecules and communicating between living cells and artificial cell models.
Collapse
Affiliation(s)
- Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu city, Gunma 376-8515, Japan
| |
Collapse
|
8
|
Miele Y, Mingotaud AF, Caruso E, Malacarne MC, Izzo L, Lonetti B, Rossi F. Hybrid giant lipid vesicles incorporating a PMMA-based copolymer. Biochim Biophys Acta Gen Subj 2020; 1865:129611. [PMID: 32272202 DOI: 10.1016/j.bbagen.2020.129611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND In recent years, there has been a growing interest in the formation of copolymer-lipid hybrid self-assemblies, which allow combining and improving the main features of pure lipid-based and copolymer-based systems known for their potential applications in the biomedical field. As the most common method used to obtain giant vesicles is electroformation, most systems so far used low Tg polymers for their flexibility at room temperature. METHODS Copolymers used in the hybrid vesicles have been synthesized by a modified version of the ATRP, namely the Activators ReGenerated by Electron Transfer ATRP and characterized by NMR and DSC. Giant hybrid vesicles have been obtained using electroformation and droplet transfer method. Confocal fluorescence microscopy was used to image the vesicles. RESULTS Electroformation enabled to obtain hybrid vesicles in a narrow range of compositions (15 mol% was the maximum copolymer content). This range could be extended by the use of a droplet transfer method, which enabled obtaining hybrid vesicles incorporating a methacrylate-based polymer in a wide range of compositions. Proof of the hybrid composition was obtained by fluorescence microscopy using labeled lipids and copolymers. CONCLUSIONS This work describes for the first time, to the best of our knowledge, the formation of giant hybrid polymer/lipid vesicles formed with such a content of a polymethylmethacrylate copolymer, the glass temperature of which is above room temperature. GENERAL SIGNIFICANCE This work shows that polymer structures, more complex than the ones mostly employed, can be possibly included in giant hybrid vesicles by using the droplet transfer method. This will give easier access to functionalized and stimuli-responsive giant vesicles and to systems exhibiting a tunable permeability, these systems being relevant for biological and technological applications.
Collapse
Affiliation(s)
- Ylenia Miele
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Enrico Caruso
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant, 3, 21100 Varese, Italy
| | - Miryam C Malacarne
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant, 3, 21100 Varese, Italy
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant, 3, 21100 Varese, Italy.
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, F-31062 Toulouse cedex 9, France.
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences - DEEP Sciences - Pian dei Mantellini 44, 53100 Siena, Italy
| |
Collapse
|
9
|
Hürtgen D, Vogel SK, Schwille P. Cytoskeletal and Actin-Based Polymerization Motors and Their Role in Minimal Cell Design. ACTA ACUST UNITED AC 2019; 3:e1800311. [PMID: 32648711 DOI: 10.1002/adbi.201800311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/28/2019] [Indexed: 01/28/2023]
Abstract
Life implies motion. In cells, protein-based active molecular machines drive cell locomotion and intracellular transport, control cell shape, segregate genetic material, and split a cell in two parts. Key players among molecular machines driving these various cell functions are the cytoskeleton and motor proteins that convert chemical bound energy into mechanical work. Findings over the last decades in the field of in vitro reconstitutions of cytoskeletal and motor proteins have elucidated mechanistic details of these active protein systems. For example, a complex spatial and temporal interplay between the cytoskeleton and motor proteins is responsible for the translation of chemically bound energy into (directed) movement and force generation, which eventually governs the emergence of complex cellular functions. Understanding these mechanisms and the design principles of the cytoskeleton and motor proteins builds the basis for mimicking fundamental life processes. Here, a brief overview of actin, prokaryotic actin analogs, and motor proteins and their potential role in the design of a minimal cell from the bottom-up is provided.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (Synmikro), D-35043, Marburg, Germany
| | - Sven Kenjiro Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| |
Collapse
|
10
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
11
|
Göpfrich K, Platzman I, Spatz JP. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells. Trends Biotechnol 2018; 36:938-951. [PMID: 29685820 PMCID: PMC6100601 DOI: 10.1016/j.tibtech.2018.03.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
With the ultimate aim to construct a living cell, bottom-up synthetic biology strives to reconstitute cellular phenomena in vitro - disentangled from the complex environment of a cell. Recent work towards this ambitious goal has provided new insights into the mechanisms governing life. With the fast-growing library of functional modules for synthetic cells, their classification and integration become increasingly important. We discuss strategies to reverse-engineer and recombine functional parts for synthetic eukaryotes, mimicking the characteristics of nature's own prototype. Particularly, we focus on large outer compartments, complex endomembrane systems with organelles, and versatile cytoskeletons as hallmarks of eukaryotic life. Moreover, we identify microfluidics and DNA nanotechnology as two technologies that can integrate these functional modules into sophisticated multifunctional synthetic cells.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
|
13
|
Tsuji S, Ichihashi N. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits. Biochem Biophys Rep 2017; 10:325-328. [PMID: 28955760 PMCID: PMC5614676 DOI: 10.1016/j.bbrep.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 11/24/2022] Open
Abstract
Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species. A highly sensitive translation assay was established. B. subtilis 50S subunit is active for translation in an E. coli system. G. stearothermophilus 50S subunit is active for translation in an E. coli system.
Collapse
Affiliation(s)
- Sayaka Tsuji
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norikazu Ichihashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author at: Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Moreno-Flores S. Inward multivesiculation at the basal membrane of adherent giant phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:793-9. [PMID: 26828120 DOI: 10.1016/j.bbamem.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
Adherent giant vesicles composed of phosphatidylcholine, phosphatidylserine and biotinylated lipids form clusters of inward spherical buds at their basal membrane. The process is spontaneous and occurs when the vesicles undergo a sequence of osmotic swelling and deswelling. The daughter vesicles have a uniform size (diameter ≈ 2-3 μm), engulf small volumes of outer fluid and remain attached to the region of the membrane from which they generate, even after restoring the isotonicity. A pinning-sealing mechanism of long-wavelength modes of membrane fluctuations is proposed, by which the just-deflated vesicles reduce the surplus of membrane area and avoid excessive spreading and compression via biotin anchors. The work discusses the rationale behind the mechanism that furnishes GUVs with basal endovesicles, and its prospective use to simulate cellular events or to create molecular carriers.
Collapse
Affiliation(s)
- Susana Moreno-Flores
- Former affiliation: Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 11, A-1190, Vienna, Austria.
| |
Collapse
|
15
|
Frohnmayer JP, Brüggemann D, Eberhard C, Neubauer S, Mollenhauer C, Boehm H, Kessler H, Geiger B, Spatz JP. Minimal synthetic cells to study integrin-mediated adhesion. Angew Chem Int Ed Engl 2015; 54:12472-8. [PMID: 26257266 PMCID: PMC4675076 DOI: 10.1002/anie.201503184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Indexed: 11/12/2022]
Abstract
To shed light on cell-adhesion-related molecular pathways, synthetic cells offer the unique advantage of a well-controlled model system with reduced molecular complexity. Herein, we show that liposomes with the reconstituted platelet integrin αIIb β3 as the adhesion-mediating transmembrane protein are a functional minimal cell model for studying cellular adhesion mechanisms in a defined environment. The interaction of these synthetic cells with various extracellular matrix proteins was analyzed using a quartz crystal microbalance with dissipation monitoring. The data indicated that integrin was functionally incorporated into the lipid vesicles, thus enabling integrin-specific adhesion of the engineered liposomes to fibrinogen- and fibronectin-functionalized surfaces. Then, we were able to initiate the detachment of integrin liposomes from these surfaces in the presence of the peptide GRGDSP, a process that is even faster with our newly synthesized peptide mimetic SN529, which specifically inhibits the integrin αIIb β3 .
Collapse
Affiliation(s)
- Johannes P Frohnmayer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Dorothea Brüggemann
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Christian Eberhard
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Stefanie Neubauer
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität MünchenLichtenbergstrasse 4, 85747 Garching (Germany)
| | - Christine Mollenhauer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität MünchenLichtenbergstrasse 4, 85747 Garching (Germany)
| | - Benjamin Geiger
- The Weizmann Institute of Science, Department of Molecular Cell BiologyRehovot (Israel)
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| |
Collapse
|
16
|
|
17
|
Abstract
The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells.
Collapse
|
18
|
Alkhammash HI, Li N, Berthier R, de Planque MRR. Native silica nanoparticles are powerful membrane disruptors. Phys Chem Chem Phys 2015; 17:15547-60. [DOI: 10.1039/c4cp05882h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica nanoparticles permeabilize liposomal membranes as a function of nanoparticle size, surface chemistry and biocoating as well as membrane charge.
Collapse
Affiliation(s)
- Hend I. Alkhammash
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
- Department of Physics
| | - Nan Li
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| | - Rémy Berthier
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| | - Maurits R. R. de Planque
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| |
Collapse
|
19
|
Urban PL. Compartmentalised chemistry: from studies on the origin of life to engineered biochemical systems. NEW J CHEM 2014. [DOI: 10.1039/c4nj00894d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Brüggemann D, Frohnmayer JP, Spatz JP. Model systems for studying cell adhesion and biomimetic actin networks. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1193-202. [PMID: 25161853 PMCID: PMC4142981 DOI: 10.3762/bjnano.5.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/25/2014] [Indexed: 05/28/2023]
Abstract
Many cellular processes, such as migration, proliferation, wound healing and tumor progression are based on cell adhesion. Amongst different cell adhesion molecules, the integrin receptors play a very significant role. Over the past decades the function and signalling of various such integrins have been studied by incorporating the proteins into lipid membranes. These proteolipid structures lay the foundation for the development of artificial cells, which are able to adhere to substrates. To build biomimetic models for studying cell shape and spreading, actin networks can be incorporated into lipid vesicles, too. We here review the mechanisms of integrin-mediated cell adhesion and recent advances in the field of minimal cells towards synthetic adhesion. We focus on reconstituting integrins into lipid structures for mimicking cell adhesion and on the incorporation of actin networks and talin into model cells.
Collapse
Affiliation(s)
- Dorothea Brüggemann
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Johannes P Frohnmayer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
| |
Collapse
|
21
|
Trachtenberg S, Schuck P, Phillips TM, Andrews SB, Leapman RD. A structural framework for a near-minimal form of life: mass and compositional analysis of the helical mollicute Spiroplasma melliferum BC3. PLoS One 2014; 9:e87921. [PMID: 24586297 PMCID: PMC3931623 DOI: 10.1371/journal.pone.0087921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/01/2014] [Indexed: 12/31/2022] Open
Abstract
Spiroplasma melliferum is a wall-less bacterium with dynamic helical geometry. This organism is geometrically well defined and internally well ordered, and has an exceedingly small genome. Individual cells are chemotactic, polar, and swim actively. Their dynamic helicity can be traced at the molecular level to a highly ordered linear motor (composed essentially of the proteins fib and MreB) that is positioned on a defined helical line along the internal face of the cell's membrane. Using an array of complementary, informationally overlapping approaches, we have taken advantage of this uniquely simple, near-minimal life-form and its helical geometry to analyze the copy numbers of Spiroplasma's essential parts, as well as to elucidate how these components are spatially organized to subserve the whole living cell. Scanning transmission electron microscopy (STEM) was used to measure the mass-per-length and mass-per-area of whole cells, membrane fractions, intact cytoskeletons and cytoskeletal components. These local data were fit into whole-cell geometric parameters determined by a variety of light microscopy modalities. Hydrodynamic data obtained by analytical ultracentrifugation allowed computation of the hydration state of whole living cells, for which the relative amounts of protein, lipid, carbohydrate, DNA, and RNA were also estimated analytically. Finally, ribosome and RNA content, genome size and gene expression were also estimated (using stereology, spectroscopy and 2D-gel analysis, respectively). Taken together, the results provide a general framework for a minimal inventory and arrangement of the major cellular components needed to support life.
Collapse
Affiliation(s)
- Shlomo Trachtenberg
- Dept of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Terry M. Phillips
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - S. Brian Andrews
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
Engel H, Rondeau E, Windhab EJ, Walde P. External surface area determination of lipid vesicles using trinitrobenzene sulfonate and ultraviolet/visible spectrophotometry. Anal Biochem 2013; 442:262-71. [DOI: 10.1016/j.ab.2013.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/05/2013] [Accepted: 07/30/2013] [Indexed: 12/23/2022]
|
23
|
Stano P, Luisi PL. Semi-synthetic minimal cells: origin and recent developments. Curr Opin Biotechnol 2013; 24:633-8. [PMID: 23374484 DOI: 10.1016/j.copbio.2013.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/19/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The notion of minimal cells refers to cellular structures that contain the minimal and sufficient complexity to still be defined as living, or at least capable to display the most important features of biological cells. Here we briefly describe the laboratory construction of minimal cells, a project within the broader field of synthetic biology. In particular we discuss the advancements in the preparation of semi-synthetic cells based on the encapsulation of biochemicals inside liposomes, illustrating from the one hand the origin of this research and the most recent developments; and from the other the difficulties and limits of the approach. The role of physicochemical understandings is greatly emphasized.
Collapse
Affiliation(s)
- Pasquale Stano
- Biology Department, University of Roma Tre, Viale G. Marconi 446, I-00146 Rome, Italy
| | | |
Collapse
|
24
|
Nishiyama K, Ichihashi N, Matsuura T, Kazuta Y, Yomo T. α-Complementation in an artificial genome replication system in liposomes. Chembiochem 2012. [PMID: 23193098 DOI: 10.1002/cbic.201200586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genome size is considered one of the limiting factors for the replication of primitive life forms. However, the relationship between genome size and replication efficiency has not been tested experimentally. In this study, we examined the effect of genome size on genome replication by using an artificial cell model: a self-replicating RNA genome encapsulated in a liposome. For the reduced genome size we used α-complementation of the lacZ gene. We first characterized α-complementation in the purified translation system and then applied α-complementation to the genome replication system. The reduction in the genome size together with the addition of ω-fragment increased the replication efficiency approximately eightfold. This result provides experimental evidence that genome size can be a limiting factor for primitive self-replication systems; it also implies that this artificial cell model could be a useful experimental model to identify possible mechanisms of genome enlargement.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
25
|
Matosevic S. Synthesizing artificial cells from giant unilamellar vesicles: State-of-the art in the development of microfluidic technology. Bioessays 2012; 34:992-1001. [DOI: 10.1002/bies.201200105] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Importance of parasite RNA species repression for prolonged translation-coupled RNA self-replication. ACTA ACUST UNITED AC 2012; 19:478-87. [PMID: 22520754 DOI: 10.1016/j.chembiol.2012.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/03/2023]
Abstract
Increasingly complex reactions are being constructed by bottom-up approaches with the aim of developing an artificial cell. We have been engaged in the construction of a translation-coupled replication system of genetic information from RNA and a reconstituted translation system. Here a mathematical model was established to gain a quantitative understanding of the complex reaction network. The sensitivity analysis predicted that the limiting factor for the present replication reaction was the appearance of parasitic replicators. We then confirmed experimentally that repression of such parasitic replicators by compartmentalization of the reaction in water-in-oil emulsions improved the duration of self-replication. We also found that the main source of the parasite was genomic RNA, probably by nonhomologous recombination. This result provided experimental evidence for the importance of parasite repression for the development of long-lasting genome replication systems.
Collapse
|
27
|
Microscale and nanoscale compartments for biotechnology. Curr Opin Biotechnol 2012; 23:522-8. [DOI: 10.1016/j.copbio.2012.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
|
28
|
Approaches to chemical synthetic biology. FEBS Lett 2012; 586:2138-45. [DOI: 10.1016/j.febslet.2012.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 11/24/2022]
|
29
|
Stano P, Carrara P, Kuruma Y, Pereira de Souza T, Luisi PL. Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12298c] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|