Liyanaarachchi VC, Nishshanka GKSH, Nimarshana PHV, Chang JS, Ariyadasa TU, Nagarajan D. Modeling of astaxanthin biosynthesis via machine learning, mathematical and metabolic network modeling.
Crit Rev Biotechnol 2024;
44:996-1017. [PMID:
37587012 DOI:
10.1080/07388551.2023.2237183]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 06/17/2023] [Indexed: 08/18/2023]
Abstract
Natural astaxanthin is synthesized by diverse organisms including: bacteria, fungi, microalgae, and plants involving complex cellular processes, which depend on numerous interrelated parameters. Nonetheless, existing knowledge regarding astaxanthin biosynthesis and the conditions influencing astaxanthin accumulation is fairly limited. Thus, manipulation of the growth conditions to achieve desired biomass and astaxanthin yields can be a complicated process requiring cost-intensive and time-consuming experiment-based research. As a potential solution, modeling and simulation of biological systems have recently emerged, allowing researchers to predict/estimate astaxanthin production dynamics in selected organisms. Moreover, mathematical modeling techniques would enable further optimization of astaxanthin synthesis in a shorter period of time, ultimately contributing to a notable reduction in production costs. Thus, the present review comprehensively discusses existing mathematical modeling techniques which simulate the bioaccumulation of astaxanthin in diverse organisms. Associated challenges, solutions, and future perspectives are critically analyzed and presented.
Collapse