1
|
Zhang W, Takahashi S, Shimada N, Maruyama A. 2D-3D-Convertible, pH-Responsive Lipid Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301219. [PMID: 37376845 DOI: 10.1002/smll.202301219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/10/2023] [Indexed: 06/29/2023]
Abstract
2D nanosheets self-assembled with amphiphilic molecules are promising tools for biomedical applications; yet, there are challenges to form and stabilize these nanosheets under complex physiological conditions. Here, the development of lipid nanosheets with high structural stability that can be reversibly converted to cell-sized vesicles by changes in pH within the physiological range robustly, are described. The system is controlled by the membrane disruptive peptide E5 and a cationic copolymer anchored on lipid membranes. It is envisioned that nanosheets formed using the dual anchoring peptide/cationic copolymer system can be employed in dynamic lipidic nanodevices, such as the vesosomes described here, drug delivery systems, and artificial cells.
Collapse
Affiliation(s)
- Wancheng Zhang
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Shutaro Takahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
2
|
Shetty S, Yandrapalli N, Pinkwart K, Krafft D, Vidakovic-Koch T, Ivanov I, Robinson T. Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells. ACS NANO 2021; 15:15656-15666. [PMID: 34570489 PMCID: PMC8552445 DOI: 10.1021/acsnano.1c04219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 05/28/2023]
Abstract
The bottom-up assembly of multicompartment artificial cells that are able to direct biochemical reactions along a specific spatial pathway remains a considerable engineering challenge. In this work, we address this with a microfluidic platform that is able to produce monodisperse multivesicular vesicles (MVVs) to serve as synthetic eukaryotic cells. Using a two-inlet polydimethylsiloxane channel design to co-encapsulate different populations of liposomes we are able to produce lipid-based MVVs in a high-throughput manner and with three separate inner compartments, each containing a different enzyme: α-glucosidase, glucose oxidase, and horseradish peroxidase. We demonstrate the ability of these MVVs to carry out directed chemical communication between the compartments via the reconstitution of size-selective membrane pores. Therefore, the signal transduction, which is triggered externally, follows a specific spatial pathway between the compartments. We use this platform to study the effects of enzyme cascade compartmentalization by direct analytical comparison between bulk, one-, two-, and three-compartment systems. This microfluidic strategy to construct complex hierarchical structures is not only suitable to study compartmentalization effects on biochemical reactions but is also applicable for developing advanced drug delivery systems as well as minimal cells in the field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Sunidhi
C. Shetty
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Naresh Yandrapalli
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerstin Pinkwart
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Dorothee Krafft
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Tanja Vidakovic-Koch
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Ivan Ivanov
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Tom Robinson
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
4
|
Chen XW, Ning XY, Zou Y, Liu X, Yang XQ. Multicompartment emulsion droplets for programmed release of hydrophobic cargoes. Food Funct 2019; 10:4522-4532. [PMID: 31355399 DOI: 10.1039/c9fo00558g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Delivery systems with multicompartmental structures that allow simultaneous delivery of several cargos are of great interest in both fundamental research and industrial applications. Here, we report a facile and easily scalable approach to fabricate multi-compartmentalized microdroplets for achieving programmed release of hydrophobic cargoes. Well-dispersed nanodroplets stabilized by natural Quillaja saponin served as an effective colloid stabilizer for fabricating microscale emulsion droplets with multicompartment architectures comprising many nanoscale droplets as a shell and single microscale core. Control of the number of nanodroplets allows accurate manipulation of the interface permeability for flexible and controllable release of volatile compounds (e.g., 2,3-butanedione, cis-3-hexen-1-ol, ethyl butyrate, d-limonene). More interestingly, the multicompartment microdroplets exhibited a higher flexibility for programmed release of different volatile compounds, as well as curcumin, during in vitro digestion by introducing cargos into the shell subcompartments or core microcompartment. The promising results highlight the power of this multi-compartmentalized system toward accessing a powerful platform for functional cargo delivery strategies.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | | | | | | | | |
Collapse
|
5
|
Sugiyama H, Toyota T. Toward Experimental Evolution with Giant Vesicles. Life (Basel) 2018; 8:life8040053. [PMID: 30384503 PMCID: PMC6316375 DOI: 10.3390/life8040053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023] Open
Abstract
Experimental evolution in chemical models of cells could reveal the fundamental mechanisms of cells today. Various chemical cell models, water-in-oil emulsions, oil-on-water droplets, and vesicles have been constructed in order to conduct research on experimental evolution. In this review, firstly, recent studies with these candidate models are introduced and discussed with regards to the two hierarchical directions of experimental evolution (chemical evolution and evolution of a molecular self-assembly). Secondly, we suggest giant vesicles (GVs), which have diameters larger than 1 µm, as promising chemical cell models for studying experimental evolution. Thirdly, since technical difficulties still exist in conventional GV experiments, recent developments of microfluidic devices to deal with GVs are reviewed with regards to the realization of open-ended evolution in GVs. Finally, as a future perspective, we link the concept of messy chemistry to the promising, unexplored direction of experimental evolution in GVs.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
6
|
Chountoulesi M, Pippa N, Pispas S, Chrysina ED, Forys A, Trzebicka B, Demetzos C. Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. Int J Pharm 2018; 550:57-70. [PMID: 30121331 DOI: 10.1016/j.ijpharm.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
The self-assembly process of amphiphilic molecules into solvents results in different mesophases, such as inverse cubic and hexagonal that both belong to the wider category of lyotropic liquid crystals. The above mesophases can be further exploited upon the formation of liquid crystalline nanoparticles, cubosomes and hexosomes respectively, which may be utilized as drug delivery nanosystems, exhibiting major advantages. In the present study, liquid crystalline nanoparticles were prepared and evaluated in terms of morphology and physicochemical behavior. The goal of this study is to examine the effect of the different formulation parameters, as well as the effect of the different microenvironmental factors (temperature, ionic strength, pH, serum proteins presence) on their behavior. The physicochemical behavior and the morphology of the systems were investigated by X-Ray Diffraction (XRD), cryogenic-Transmission Electron Microscopy (cryo-TEM), fluorescence spectroscopy and a gamut of light scattering techniques. The formulation process was proved to influence strictly the physicochemical behavior of the prepared nanosystems. They presented colloidal stability over time and upon ionic strength increase, but they were affected by the presence of proteins and presented reversible structure alterations upon temperature increase. Their morphological structure and internal microenvironment, reflected by micropolarity and microfluidity, were also influenced by the formulation parameters.
Collapse
Affiliation(s)
- Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, Zabrze, Poland
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
7
|
Ngandeu Neubi GM, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomater Sci 2018; 6:958-973. [DOI: 10.1039/c8bm00175h] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bio-inspired platforms directly derived from biological sources are becoming a rapidly emerging field in the development of future anticancer therapeutics. The various platforms discussed are bacteria-based, virus-inspired, cell-derived, nanostructured lipid nanoparticles, and biomacromolecular drug delivery systems.
Collapse
Affiliation(s)
- Gella Maelys Ngandeu Neubi
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yaw Opoku-Damoah
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaochen Gu
- Faculty of Pharmacy
- University of Manitoba
- Winnipeg
- Canada R3E 0T5
| | - Yue Han
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yang Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
8
|
Baccile N, Le Griel P, Prévost S, Everaert B, Van Bogaert INA, Roelants S, Soetaert W. Glucosomes: Glycosylated Vesicle-in-Vesicle Aggregates in Water from pH-Responsive Microbial Glycolipid. ChemistryOpen 2017; 6:526-533. [PMID: 28794948 PMCID: PMC5542763 DOI: 10.1002/open.201700101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Vesicle-in-vesicle self-assembled containers, or vesosomes, are promising alternatives to liposomes because of their possible hierarchical encapsulation and high stability. We report herein the first example of sugar-based vesicles-in-vesicles, which we baptize glucosomes. These were prepared by using a natural microbial glycolipid (branched C22 sophorolipid) extracted from the culture medium of the yeast Pseudohyphozyma bogoriensis. Glucosomes spontaneously formed in water between pH 6 and pH 4 at room temperature, without the requirement of any additive. By means of pH-resolved in situ small angle X-ray scattering, we provided direct evidence for the vesicle-formation mechanism. Statistical treatment of the vesicle radii distribution measured by cryo-tansmission electron microscopy by using a derived form of the Helfrich bending free-energy expression provided an order of magnitude for the effective bending constant (the sum of the curvature and the saddle-splay moduli) of the lipid membrane to K=(0.4±0.1) kBT. This value is in agreement with the bending constant measured for hydrocarbon-based vesicles membranes.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Universités, UPMC Univ Paris 06, CNRSCollège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 757475005ParisFrance
| | - Patrick Le Griel
- Sorbonne Universités, UPMC Univ Paris 06, CNRSCollège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 757475005ParisFrance
| | - Sylvain Prévost
- ESRF—The European SynchrotronHigh Brilliance Beamline ID0238043GrenobleFrance
| | - Bernd Everaert
- Bio Base Europe Pilot PlantRodenhuizekaai 19042GhentBelgium
| | - Inge N. A. Van Bogaert
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience EngineeringGhent University, Coupure Links 6539000GhentBelgium
| | - Sophie Roelants
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience EngineeringGhent University, Coupure Links 6539000GhentBelgium
- Bio Base Europe Pilot PlantRodenhuizekaai 19042GhentBelgium
| | - Wim Soetaert
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience EngineeringGhent University, Coupure Links 6539000GhentBelgium
| |
Collapse
|
9
|
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS NANO 2017; 11:6549-6565. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mark Friddin
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yuval Elani
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Alavi M, Karimi N, Safaei M. Application of Various Types of Liposomes in Drug Delivery Systems. Adv Pharm Bull 2017; 7:3-9. [PMID: 28507932 PMCID: PMC5426731 DOI: 10.15171/apb.2017.002] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 11/23/2022] Open
Abstract
Liposomes, due to their various forms, require further exploration. These structures can deliver both hydrophilic and hydrophobic drugs for cancer, antibacterial, antifungal, immunomodulation, diagnostics, ophtalmica, vaccines, enzymes and genetic elements. Preparation of liposomes results in different properties for these systems. In addition, based on preparation methods, liposomes types can be unilamellar, multilamellar and giant unilamellar; however, there are many factors and difficulties that affect the development of liposome drug delivery structure. In the present review, we discuss some problems that impact drug delivery by liposomes. In addition, we discuss a new generation of liposomes, which is utilized for decreasing the limitation of the conventional liposomes.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of nanobiotecnology, 67149 Baghabrisham, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Department of nanobiotecnology, 67149 Baghabrisham, Razi University, Kermanshah, Iran
| | - Mohsen Safaei
- Department of nanobiotecnology, 67149 Baghabrisham, Razi University, Kermanshah, Iran
| |
Collapse
|
11
|
Akhtar N, Khan RA. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'. Prog Lipid Res 2016; 64:192-230. [DOI: 10.1016/j.plipres.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
|
12
|
|
13
|
Abstract
Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.
Collapse
|
14
|
Jung SH, Jang H, Lim MC, Kim JH, Shin KS, Kim SM, Kim HY, Kim YR, Jeon TJ. Chromatic Biosensor for Detection of Phosphinothricin Acetyltransferase by Use of Polydiacetylene Vesicles Encapsulated within Automatically Generated Immunohydrogel Beads. Anal Chem 2015; 87:2072-8. [DOI: 10.1021/ac501795x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Min-Cheol Lim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jae-Hwan Kim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Kong-Sik Shin
- Biosafety
Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | | | - Hae-Yeong Kim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Young-Rok Kim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | | |
Collapse
|
15
|
Park TH, Chen GGQ. Editorial: Biotechnology Journal in Asia - the first official AFOB special issue. Biotechnol J 2014; 8:1246-8. [PMID: 24591182 DOI: 10.1002/biot.201300415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first AFOB special issue of Biotechnology Journal is edited by Prof. Tai Hyun Park and Prof. George G. Q. Chen. The eleven articles are representative of the diverse nature of biotechnology today, covering topics such as microfluidic devices, high-throughput analysis, biosensors, bio-imaging, tissue engineering, vaccination, gene delivery, gene expression, and cell-free protein synthesis.
Collapse
Affiliation(s)
- Tai Hyun Park
- President of Advanced Institutes of Convergence Technology (AICT), Professor of School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
| | | |
Collapse
|