1
|
Romero JJ, Angelo J, Xu X, Husson SM, Ghose S. Modeling and techno-economic analysis of downstream manufacturing process intensification strategies for existing biopharmaceutical facilities. J Chromatogr A 2024; 1737:465431. [PMID: 39454502 DOI: 10.1016/j.chroma.2024.465431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Downstream process (DSP) intensification technologies have the potential to provide faster, more sustainable, and more profitable processes. Nevertheless, the calculation of the possible benefits obtained from the implementation of these technologies is not always evident and usually depends on a particular production scenario. In the present work, we developed a framework for techno-economic feasibility analysis to assess the impact of changes in protein A capture, polishing, and viral filtration on process performance. The simulation used in this analysis is based on fundamental knowledge of the process and incorporates previously developed tools for calculating multi-column chromatography (MCC) and ultrafiltration-diafiltration variables. This framework was used to simulate production scenarios featuring intensified production schedules, increases in feed titers, MCC, integrated batch polishing, and high throughput viral filtration. These process alternatives were compared through key performance indicators that were selected to address specific questions on the suitability of these process intensification strategies in a particular context. Results were presented graphically for decision-makers to easily identify the best process alternatives for a given production scenario. For the conditions proposed in this work, we find that the scheduling practices, and not the unit operation processing times, have the greatest impact on process productivity. For instance, doubling the harvesting frequency resulted in a productivity increase of up to 61 %. Meanwhile, technological intensification strategies like MCC cause the greatest impact on operating costs, reducing cost of goods of the DSP by up to 27 %. Overall, intensification of individual unit operations can yield benefits from a sustainability and cost perspective, but to achieve higher throughputs, it is necessary to have fully intensified DSP and scheduling practices.
Collapse
Affiliation(s)
- Juan J Romero
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, MA, 01434, USA; Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634 USA
| | - James Angelo
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, MA, 01434, USA.
| | - Xuankuo Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, MA, 01434, USA.
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634 USA
| | - Sanchayita Ghose
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, MA, 01434, USA
| |
Collapse
|
2
|
Minervini M, Mergy M, Zhu Y, Gutierrez Diaz MA, Pointer C, Shinkazh O, Oppenheim SF, Cramer SM, Przybycien TM, Zydney AL. Continuous precipitation-filtration process for initial capture of a monoclonal antibody product using a four-stage countercurrent hollow fiber membrane washing step. Biotechnol Bioeng 2024; 121:2258-2268. [PMID: 37565527 PMCID: PMC10858288 DOI: 10.1002/bit.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
The significant increase in product titers, coupled with the growing focus on continuous bioprocessing, has renewed interest in using precipitation as a low-cost alternative to Protein A chromatography for the primary capture of monoclonal antibody (mAb) products. In this work, a commercially relevant mAb was purified from clarified cell culture fluid using a tubular flow precipitation reactor with dewatering and washing provided by tangential flow microfiltration. The particle morphology was evaluated using an inline high-resolution optical probe, providing quantitative data on the particle size distribution throughout the precipitation process. Data were obtained in both a lab-built 2-stage countercurrent washing system and a commercial countercurrent contacting skid that provided 4 stages of continuous washing. The processes were operated continuously for 2 h with overall mAb yield of 92 ± 3% and DNA removal of nearly 3 logs in the 4-stage system. The high DNA clearance was achieved by selective redissolution of the mAb using a low pH acetate buffer. Host cell protein clearance was 0.59 ± 0.08 logs, comparable to that based on model predictions. The process mass intensity was slightly better than typical Protein A processes and could be significantly improved by preconcentration of the antibody feed material.
Collapse
Affiliation(s)
- Mirko Minervini
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Matthew Mergy
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Yuncan Zhu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mario A Gutierrez Diaz
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Todd M Przybycien
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
3
|
Jungbauer A, Ferreira G, Butler M, D'Costa S, Brower K, Rayat A, Willson R. Status and future developments for downstream processing of biological products: Perspectives from the Recovery XIX yield roundtable discussions. Biotechnol Bioeng 2024; 121:2524-2541. [PMID: 38795025 DOI: 10.1002/bit.28738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Governments and biopharmaceutical organizations aggressively leveraged expeditious communication capabilities, decision models, and global strategies to make a COVID-19 vaccine happen within a period of 12 months. This was an unusual effort and cannot be transferred to normal times. However, this focus on a single vaccine has also led to other treatments and drug developments being sidelined. Society expects the pharmaceutical industry to provide an uninterrupted supply of medicines. However, it is often overlooked how complex the manufacture of these compounds is and what logistics are required, not to mention the time needed to develop new drugs. The overarching theme, therefore, is patient access and how we can help ensure access and extend it to low- and middle-income countries. Despite unceasing efforts to make medications available to all patient populations, this must never be done at the expense of patient safety. A major fraction of the costs in biopharmaceutical manufacturing are for drug discovery, process development, and clinical studies. Infrastructure costs are very difficult to quantify because they often depend on whether a greenfield facility or an existing, depreciated facility is used or adapted for a new product. To accelerate process development concepts of platform process and prior knowledge are increasingly leveraged. While more traditional protein therapeutics continue to dominate the field, we are also experiencing the exciting emergence and evolution of other therapeutic formats (bispecifics, tetravalent mAbs, antibody-drug conjugates, enzymes, peptides, etc.) that offer unique treatment options for patients. Protein modalities are still dominant, but new modalities are being developed that can be learned from including advanced therapeutics-like cell and gene therapies. The industry must develop a model-based strategy for process development and technologies such as continuous integrated biomanufacturing must be adopted. The overall conclusion is that the pandemic pace was unsustainable, focused on vaccine delivery at the expense of other modalities/disease targets, and had implications for professional and personal life (work-life balance). Routinely reducing development time from 10 years to 1 year is nearly impossible to achieve. Environmental aspects of sustainable downstream processing are also described.
Collapse
Affiliation(s)
- Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gisela Ferreira
- Process Development, AstraZeneca, Gaithersburg, Maryland, USA
| | - Michelle Butler
- Pharmaceutical Technical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Susan D'Costa
- Technology Development and Manufacturing, Genezen Laboratories, Indianapolis, Indiana, USA
| | - Kevin Brower
- Mammalian Platform, Sanofi, Framingham, Massachusetts, USA
| | - Andrea Rayat
- Department of Biochemical Engineering, University College London, London, UK
| | - Richard Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Sharma V, Mottafegh A, Joo JU, Kang JH, Wang L, Kim DP. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals. LAB ON A CHIP 2024; 24:2861-2882. [PMID: 38751338 DOI: 10.1039/d3lc01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biopharmaceuticals have emerged as powerful therapeutic agents, revolutionizing the treatment landscape for various diseases, including cancer, infectious diseases, autoimmune and genetic disorders. These biotherapeutics pave the way for precision medicine with their unique and targeted capabilities. The production of high-quality biologics entails intricate manufacturing processes, including cell culture, fermentation, purification, and formulation, necessitating specialized facilities and expertise. These complex processes are subject to rigorous regulatory oversight to evaluate the safety, efficacy, and quality of biotherapeutics prior to clinical approval. Consequently, these drugs undergo extensive purification unit operations to achieve high purity by effectively removing impurities and contaminants. The field of personalized precision medicine necessitates the development of novel and highly efficient technologies. Microfluidic technology addresses unmet needs by enabling precise and compact separation, allowing rapid, integrated and continuous purification modules. Moreover, the integration of intelligent biomanufacturing systems with miniaturized devices presents an opportunity to significantly enhance the robustness of complex downstream processing of biopharmaceuticals, with the benefits of automation and advanced control. This allows seamless data exchange, real-time monitoring, and synchronization of purification steps, leading to improved process efficiency, data management, and decision-making. Integrating autonomous systems into biopharmaceutical purification ensures adherence to regulatory standards, such as good manufacturing practice (GMP), positioning the industry to effectively address emerging market demands for personalized precision nano-medicines. This perspective review will emphasize on the significance, challenges, and prospects associated with the adoption of continuous, integrated, and intelligent methodologies in small-scale downstream processing for various types of biologics. By utilizing microfluidic technology and intelligent systems, purification processes can be enhanced for increased efficiency, cost-effectiveness, and regulatory compliance, shaping the future of biopharmaceutical production and enabling the development of personalized and targeted therapies.
Collapse
Affiliation(s)
- Vikas Sharma
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Ji-Ho Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
5
|
Uko SO, Malami I, Ibrahim KG, Lawal N, Bello MB, Abubakar MB, Imam MU. Revolutionizing snakebite care with novel antivenoms: Breakthroughs and barriers. Heliyon 2024; 10:e25531. [PMID: 38333815 PMCID: PMC10850593 DOI: 10.1016/j.heliyon.2024.e25531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.
Collapse
Affiliation(s)
- Samuel Odo Uko
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciecnes, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa, 13110, Jordan
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| |
Collapse
|
6
|
Fan Y, Sun YN, Qiao LZ, Mao RQ, Tang SY, Shi C, Yao SJ, Lin DQ. Evaluation of dynamic control of continuous capture with periodic counter-current chromatography under feedstock variations. J Chromatogr A 2024; 1713:464528. [PMID: 38029658 DOI: 10.1016/j.chroma.2023.464528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Multi-column periodic counter-current chromatography is a promising technology for continuous antibody capture. However, dynamic changes due to disturbances and drifts pose some potential risks for continuous processes during long-term operation. In this study, a model-based approach was used to describe the changes in breakthrough curves with feedstock variations in target proteins and impurities. The performances of continuous capture of three-column periodic counter-current chromatography under ΔUV dynamic control were systematically evaluated with modeling to assess the risks under different feedstock variations. As the concentration of target protein decreased rapidly, the protein might not breakthrough from the first column, resulting in the failure of ΔUV control. Small reductions in the concentrations of target proteins or impurities would cause protein losses, which could be predicted by the modeling. The combination of target protein and impurity variations showed complicated effects on the process performance of continuous capture. A contour map was proposed to describe the comprehensive impacts under different situations, and nonoperation areas could be identified due to control failure or protein loss. With the model-based approach, after the model parameters are estimated from the breakthrough curves, it can rapidly predict the process stability under dynamic control and assess the risks under feedstock variations or UV signal drifts. In conclusion, the model-based approach is a powerful tool for continuous process evaluation under dynamic changes and would be useful for establishing a new real-time dynamic control strategy.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yan-Na Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liang-Zhi Qiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo-Que Mao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Peles J, Cacace B, Carbrello C, Giglia S, Zydney AL. Protein fouling during constant-flux virus filtration: Mechanisms and modeling. Biotechnol Bioeng 2023; 120:3357-3367. [PMID: 37489799 DOI: 10.1002/bit.28511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
As biomanufacturers consider the transition from batch to continuous processing, it will be necessary to re-examine the design and operating conditions for many downstream processes. For example, the integration of virus removal filtration in continuous biomanufacturing will likely require operation at low and constant filtrate flux instead of the high (constant) transmembrane pressures (TMPs) currently employed in traditional batch processing. The objective of this study was to examine the effect of low operating filtrate flux (5-100 L/m2 /h) on protein fouling during normal flow filtration of human serum Immunoglobulin G (hIgG) through the Viresolve® Pro membrane, including a direct comparison of the fouling behavior during constant-flux and constant-pressure operation. The filter capacity, defined as the volumetric throughput of hIgG solution at which the TMP increased to 30 psi, showed a distinct minimum at intermediate filtrate flux (around 20-30 L/m2 /h). The fouling data were well-described using a previously-developed mechanistic model based on sequential pore blockage and cake filtration, suitably modified for operation at constant flux. Simple analytical expressions for the pressure profiles were developed in the limits of very low and high filtrate flux, enabling rapid estimation of the filter performance and capacity. The model calculations highlight the importance of both the pressure-dependent rate of pore blockage and the compressibility of the protein cake to the fouling behavior. These results provide important insights into the overall impact of constant-flux operation on the protein fouling behavior and filter capacity during virus removal filtration using the Viresolve® Pro membrane.
Collapse
Affiliation(s)
- Joshua Peles
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | - Sal Giglia
- MilliporeSigma, Bedford, Massachusetts, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Huang H, Dong X, Sun Y, Shi Q. Biomimetic affinity chromatography for antibody purification: Host cell protein binding and impurity removal. J Chromatogr A 2023; 1707:464305. [PMID: 37607431 DOI: 10.1016/j.chroma.2023.464305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Peptide affinity chromatography has received increasing attention as an alternative to protein A chromatography in antibody purification. However, its lower selectivity than protein A chromatography has impeded its success in practical applications. In particular, efficient removal of contaminants, including host cell proteins (HCPs) and DNA, is a great challenge for peptide affinity chromatography in monoclonal antibody (mAb) manufacturing. In this work, a biomimetic peptide ligand (bPL), FYWHCLDE, was coupled onto Sepharose 6 Fast Flow (SepFF) to synthesize a peptide affinity gel, SepFF-bPL, for the investigation of the binding mechanism of HCP as well as the feasibility of antibody capture. The results showed that the SepFF-bPL column exhibited effective removal of mAb aggregates as well as mAb capture from feedstocks of various origins, whereas poor removal of HCP and DNA was found. Mechanistic studies of HCP binding indicated that electrostatic interactions dominated HCP binding on the SepFF-bPL gel and that ionic conductivity had a significant influence on HCP binding at low salt concentrations. Thus, combined chromatin extraction and anion exchange adsorption were introduced prior to SepFF-bPL chromatography for initial contaminant removal to reduce mAb aggregation induced by HCP and the loading burden of contaminants in SepFF-bPL chromatography. A proof-of-concept study of the purification train demonstrated a high recovery of mAb (68.7%) and low levels of HCP (23 ppm) and DNA (below the limit of detection) in the final product, which were acceptable for the mandatory requirements in clinical applications. This research provided a deep understanding of HCP binding on the peptide affinity column and led to the development of an effective purification train.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
9
|
Rumanek T, Kołodziej M, Piątkowski W, Antos D. Preferential precipitation of acidic variants from monoclonal antibody pools. Biotechnol Bioeng 2023; 120:114-124. [PMID: 36226348 DOI: 10.1002/bit.28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Microheterogeneity of monoclonal antibodies (mAbs) can impact their activity and stability. Formation of charge variants is considered as the most important source of the microheterogeneity. In particular, controlling the content of the acidic species is often of major importance for the production process and regulatory approval of therapeutic proteins. In this study, the preferential precipitation process was developed for reducing the content of acidic variants in mAb downstream pools. The process design was preceded by the determination of phase behavior of mAb variants in the presence of different precipitants. It was shown that the presence of polyethylene glycol (PEG) in protein solutions favored precipitation of acidic variants of mAbs. Precipitation yield was influenced by the variant composition in the mAb feed solutions, the concentration of the precipitant and the protein, and the ionic strength of the solutions. To improve yield, multistage precipitation was employed, where the precipitate was recycled to the precipitation process. The final product was a mixture of supernatants pooled together from the recycling steps. Such an approach can be potentially used either instead or in a combination with chromatography for adjusting the acidic variant content of mAbs, which can benefit in improvement in throughput and reduction in manufacturing costs.
Collapse
Affiliation(s)
- Tomasz Rumanek
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszów, Poland
| | - Michał Kołodziej
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| |
Collapse
|
10
|
Pons Royo MDC, De Santis T, Komuczki D, Satzer P, Jungbauer A. Continuous precipitation of antibodies by feeding of solid polyethylene glycol. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Are aptamer-based biosensing approaches a good choice for female fertility monitoring? A comprehensive review. Biosens Bioelectron 2022; 220:114881. [DOI: 10.1016/j.bios.2022.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
12
|
Minervini M, Zydney AL. Effect of module geometry on the sustainable flux during microfiltration of precipitated IgG. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Ghaemmaghamian Z, Zarghami R, Walker G, O'Reilly E, Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv Drug Deliv Rev 2022; 187:114313. [PMID: 35597307 DOI: 10.1016/j.addr.2022.114313] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Pandemics and epidemics are continually challenging human beings' health and imposing major stresses on the societies particularly over the last few decades, when their frequency has increased significantly. Protecting humans from multiple diseases is best achieved through vaccination. However, vaccines thermal instability has always been a hurdle in their widespread application, especially in less developed countries. Furthermore, insufficient vaccine processing capacity is also a major challenge for global vaccination programs. Continuous drying of vaccine formulations is one of the potential solutions to these challenges. This review highlights the challenges on implementing the continuous drying techniques for drying vaccines. The conventional drying methods, emerging technologies and their adaptation by biopharmaceutical industry are investigated considering the patented technologies for drying of vaccines. Moreover, the current progress in applying Quality by Design (QbD) in each of the drying techniques considering the critical quality attributes (CQAs), critical process parameters (CPPs) are comprehensively reviewed. An expert advice is presented on the required actions to be taken within the biopharmaceutical industry to move towards continuous stabilization of vaccines in the realm of QbD.
Collapse
Affiliation(s)
- Zahra Ghaemmaghamian
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Gavin Walker
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Ahmad Ziaee
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
14
|
Kim HR, Jung Y, Shin J, Park M, Kweon DH, Ban C. Neuron-recognizable characteristics of peptides recombined using a neuronal binding domain of botulinum neurotoxin. Sci Rep 2022; 12:4980. [PMID: 35322139 PMCID: PMC8943039 DOI: 10.1038/s41598-022-09145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant peptides were designed using the C-terminal domain (receptor binding domain, RBD) and its subdomain (peptide A2) of a heavy chain of botulinum neurotoxin A-type 1 (BoNT/A1), which can bind to the luminal domain of synaptic vesicle glycoprotein 2C (SV2C-LD). Peptide A2- or RBD-containing recombinant peptides linked to an enhanced green fluorescence protein (EGFP) were prepared by expression in Escherichia coli. A pull-down assay using SV2C-LD-covered resins showed that the recombinant peptides for CDC297 BoNT/A1, referred to EGFP-A2' and EGFP-RBD', exhibited ≥ 2.0-times stronger binding affinity to SV2C-LD than those for the wild-type BoNT/A1. Using bio-layer interferometry, an equilibrium dissociation rate constant (KD) of EGFP-RBD' to SV2C-LD was determined to be 5.45 μM, which is 33.87- and 15.67-times smaller than the KD values for EGFP and EGFP-A2', respectively. Based on confocal laser fluorescence micrometric analysis, the adsorption/absorption of EGFP-RBD' to/in differentiated PC-12 cells was 2.49- and 1.29-times faster than those of EGFP and EGFP-A2', respectively. Consequently, the recombinant peptides acquired reasonable neuron-specific binding/internalizing ability through the recruitment of RBD'. In conclusion, RBDs of BoNTs are versatile protein domains that can be used to mark neural systems and treat a range of disorders in neural systems.
Collapse
Affiliation(s)
- Hye Rin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jonghyeok Shin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Myungseo Park
- Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Biologics Research Center, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Interdisciplinary Program in BioCosmetics, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
15
|
|
16
|
|
17
|
Löfgren A, Gomis-Fons J, Andersson N, Nilsson B, Berghard L, Lagerquist Hägglund C. An integrated continuous downstream process with real-time control: A case study with periodic countercurrent chromatography and continuous virus inactivation. Biotechnol Bioeng 2021; 118:1664-1676. [PMID: 33459355 DOI: 10.1002/bit.27681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 11/11/2022]
Abstract
Integrated continuous downstream processes with process analytical technology offer a promising opportunity to reduce production costs and increase process flexibility and adaptability. In this case study, an integrated continuous process was used to purify a recombinant protein on laboratory scale in a two-system setup that can be used as a general downstream setup offering multiproduct and multipurpose manufacturing capabilities. The process consisted of continuous solvent/detergent virus inactivation followed by periodic countercurrent chromatography in the capture step, and a final chromatographic polishing step. A real-time controller was implemented to ensure stable operation by adapting the downstream process to external changes. A concentration disturbance was introduced to test the controller. After the disturbance was applied, the product output recovered within 6 h, showing the effectiveness of the controller. In a comparison of the process with and without the controller, the product output per cycle increased by 27%, the resin utilization increased from 71.4% to 87.9%, and the specific buffer consumption was decreased by 21% with the controller, while maintaining a similar yield and purity as in the process without the disturbance. In addition, the integrated continuous process outperformed the batch process, increasing the productivity by 95% and the yield by 28%.
Collapse
Affiliation(s)
- Anton Löfgren
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Joaquín Gomis-Fons
- Department of Chemical Engineering, Lund University, Lund, Sweden.,Royal Institute of Technology, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden
| | - Niklas Andersson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, Lund, Sweden.,Royal Institute of Technology, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Shi C, Zhang QL, Jiao B, Chen XJ, Chen R, Gong W, Yao SJ, Lin DQ. Process development and optimization of continuous capture with three-column periodic counter-current chromatography. Biotechnol Bioeng 2021; 118:3313-3322. [PMID: 33480439 DOI: 10.1002/bit.27689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023]
Abstract
Continuous capture with affinity chromatography is one of the most important units for continuous manufacturing of monoclonal antibody (mAb). Due to the complexity of three-column periodic counter-current chromatography (3C-PCC), three approaches (experimental, model-based, and simplified approaches) were studied for process development and optimization. The effects of residence time for interconnected load (RT C ), breakthrough percentage of the first column for interconnected load (s) and feed protein concentration (c 0 ) on productivity and capacity utilization were focused. The model-based approach was found superior to the experimental approach in process optimization and evaluation. Two phases of productivity were observed and the optimal RT C for the maximum productivity was located at the boundary of the two phases. The comprehensive effects of the operating parameters (RT C , s, and c 0 ) were evaluated by the model-based approach, and the operation space was predicted. The best performance of 34.5 g/L/h productivity and 97.6% capacity utilization were attained for MabSelect SuRe LX resin under 5 g/L concentration at RT C = 2.8 min and s = 87.5%. Moreover, a simplified approach was suggested to obtain the optimal RT C for the maximum productivity. The results demonstrated that model-assisted tools are useful to determine the optimum conditions for 3C-PCC continuous capture with high productivity and capacity utilization.
Collapse
Affiliation(s)
- Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qi-Lei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Biao Jiao
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Xu-Jun Chen
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Ran Chen
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Wei Gong
- Shanghai Engineering Research Center of Anti-tumor Biological Drugs, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
|
21
|
Mozdzierz NJ, Hong MS, Lee Y, Benisch MHP, Jiang M, Myerson AS, Braatz RD. Tunable protein crystal size distribution via continuous slug-flow crystallization with spatially varying temperature. CrystEngComm 2021. [DOI: 10.1039/d1ce00387a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Under appropriate buffer and pH conditions, the magnitude and dispersion of the product protein crystals were reproducibly manipulated by controlling the spatial temperature along the tube in a continuous tubular crystallizer.
Collapse
Affiliation(s)
- Nicholas J. Mozdzierz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yongkyu Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Chemical & Biological Engineering, Seoul National University, Seoul, South Korea
| | - Moritz H. P. Benisch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Chemical & Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Mo Jiang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Abstract
In recent years process modelling has become an established method which generates digital twins of manufacturing plant operation with the aid of numerically solved process models. This article discusses the benefits of establishing process modelling, in-house or by cooperation, in order to support the workflow from process development, piloting and engineering up to manufacturing. The examples are chosen from the variety of botanicals and biologics manufacturing thus proving the broad applicability from variable feedstock of natural plant extracts of secondary metabolites to fermentation of complex molecules like mAbs, fragments, proteins and peptides.Consistent models and methods to simulate whole processes are available. To determine the physical properties used as model parameters, efficient laboratory-scale experiments are implemented. These parameters are case specific since there is no database for complex molecules of biologics and botanicals in pharmaceutical industry, yet.Moreover, Quality-by-Design approaches, demanded by regulatory authorities, are integrated within those predictive modelling procedures. The models could be proven to be valid and predictive under regulatory aspects. Process modelling does earn its money from the first day of application. Process modelling is a key-enabling tool towards cost-efficient digitalization in chemical-pharmaceutical industries.
Collapse
|
23
|
Lin PC, Liu R, Alvin K, Wahyu S, Murgolo N, Ye J, Du Z, Song Z. Improving Antibody Production in Stably Transfected CHO Cells by CRISPR-Cas9-Mediated Inactivation of Genes Identified in a Large-Scale Screen with Chinese Hamster-Specific siRNAs. Biotechnol J 2020; 16:e2000267. [PMID: 33079482 DOI: 10.1002/biot.202000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/25/2020] [Indexed: 11/07/2022]
Abstract
The Chinese hamster ovary (CHO) cell line is commonly used for the production of biotherapeutics. As cell productivity directly affects the cost of production, methods are developed to manipulate the expression of specific genes that are known to be involved in protein synthesis, folding, and secretion to increase productivity. However, there are no large-scale CHO-specific functional screens to identify novel gene targets that impact the production of secreted recombinant proteins. Here, a large-scale, CHO cell-specific small interfering RNA screen is performed to identify genes that consistently enhance antibody production when silenced in a panel of seven CHO cell lines. Four genes, namely, Cyp1a2, Atp5s, Dgki, and P3h2, are identified, and then selected for CRISPR-Cas9 knockout validation in recombinant CHO cell lines. Single knockout of Cyp1a2, Atp5s, or Dgki, but not P3h2, results in a more than 90% increase in specific antibody productivity. Overall, the knockout of Cyp1a2 demonstrates the most significant improvement of antibody production, with a minimal impact on cell growth.
Collapse
Affiliation(s)
- Pao-Chun Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| | - Ren Liu
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Krista Alvin
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Shahreel Wahyu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| | - Nicholas Murgolo
- Bioinformatics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jianxin Ye
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhimei Du
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| |
Collapse
|
24
|
Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. Int J Mol Sci 2020; 21:ijms21197394. [PMID: 33036411 PMCID: PMC7582658 DOI: 10.3390/ijms21197394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Aptamers are a novel technology enabling the continuous measurement of analytes in blood and other body compartments, without the need for repeated sampling and the associated reagent costs of traditional antibody-based methodologies. Aptamers are short single-stranded synthetic RNA or DNA that recognise and bind to specific targets. The conformational changes that can occur upon aptamer–ligand binding are transformed into chemical, fluorescent, colour changes and other readouts. Aptamers have been developed to detect and measure a variety of targets in vitro and in vivo. Gonadotropin-releasing hormone (GnRH) is a pulsatile hypothalamic hormone that is essential for normal fertility but difficult to measure in the peripheral circulation. However, pulsatile GnRH release results in pulsatile luteinizing hormone (LH) release from the pituitary gland. As such, LH pulsatility is the clinical gold standard method to determine GnRH pulsatility in humans. Aptamers have recently been shown to successfully bind to and measure GnRH and LH, and this review will focus on this specific area. However, due to the adaptability of aptamers, and their suitability for incorporation into portable devices, aptamer-based technology is likely to be used more widely in the future.
Collapse
|
25
|
Pu S, Hadinoto K. Continuous crystallization as a downstream processing step of pharmaceutical proteins: A review. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Jenkins TP, Laustsen AH. Cost of Manufacturing for Recombinant Snakebite Antivenoms. Front Bioeng Biotechnol 2020; 8:703. [PMID: 32766215 PMCID: PMC7381290 DOI: 10.3389/fbioe.2020.00703] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023] Open
Abstract
Snakebite envenoming is a neglected tropical disease that affects millions of people across the globe. It has been suggested that recombinant antivenoms based on mixtures of human monoclonal antibodies, which target key toxins of medically important snake venom, could present a promising avenue toward the reduction of morbidity and mortality of envenomated patients. However, since snakebite envenoming is a disease of poverty, it is pivotal that next-generation therapies are affordable to those most in need; this warrants analysis of the cost dynamics of recombinant antivenom manufacture. Therefore, we present, for the first time, a bottom-up analysis of the cost dynamics surrounding the production of future recombinant antivenoms based on available industry data. We unravel the potential impact that venom volume, abundance of medically relevant toxins in a venom, and the molecular weight of these toxins may have on the final product cost. Furthermore, we assess the roles that antibody molar mass, manufacturing and purification strategies, formulation, antibody efficacy, and potential cross-reactivity play in the complex cost dynamics of recombinant antivenom manufacture. Notably, according to our calculations, it appears that such next-generation antivenoms based on cocktails of monoclonal immunoglobulin Gs (IgGs) could be manufacturable at a comparable or lower cost to current plasma-derived antivenoms, which are priced at USD 13-1120 per treatment. We found that monovalent recombinant antivenoms based on IgGs could be manufactured for USD 20-225 per treatment, while more complex polyvalent recombinant antivenoms based on IgGs could be manufactured for USD 48-1354 per treatment. Finally, we investigated the prospective cost of manufacturing for recombinant antivenoms based on alternative protein scaffolds, such as DARPins and nanobodies, and highlight the potential utility of such scaffolds in the context of low-cost manufacturing. In conclusion, the development of recombinant antivenoms not only holds a promise for improving therapeutic parameters, such as safety and efficacy, but could possibly also lead to a more competetive cost of manufacture of antivenom products for patients worldwide.
Collapse
Affiliation(s)
- Timothy Patrick Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
27
|
Moving to CoPACaPAnA: Implementation of a continuous protein A capture process for antibody applications within an end-to-end single-use GMP manufacturing downstream process. ACTA ACUST UNITED AC 2020; 26:e00465. [PMID: 32420053 PMCID: PMC7218147 DOI: 10.1016/j.btre.2020.e00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Combination of continuous protein A chromatography and end-to-end single-use downstream GMP process. Comparable and consistent product quality compared to conventional processes. Productivity is increased by 400–500%. Cost analysis and potential benefits from employing single-use process.
For the first time to our knowledge the implementation of a continuous protein A capture process for antibody applications (CoPACaPAnA) embedded in an end-to-end single-use 500 L GMP manufacturing downstream process of a multispecific monoclonal antibody (mAb) using a single-use SMB system was conducted. Throughout the last years, a change concerning the pipelines in pharmaceutical industry could be observed, moving to a more heterogeneous portfolio of antibodies, fusion proteins and nanobodies. Trying to adjust purification processes to these new modalities, a higher degree of flexibility and lower operational and capital expenditure is desired. The implementation of single-use equipment is a favored solution for increasing manufacturing agility and it has been demonstrated that continuous processing can be beneficial concerning processing cost and time. Reducing protein A resin resulted in 59% cost reduction for the protein A step, with additional cost reduction also for the intermediate and polishing step due to usage of disposable technology. The downstream process applied here consisted of three chromatography steps that were all conducted on a single-use SMB system, with the capture step being run in continuous mode while intermediate and polishing was conducted in batch mode. Further, two steps dedicated to virus inactivation/ removal and three filtration steps were performed, yielding around 100 g of drug substance going into clinical phase I testing. Therefore, in this study it has been demonstrated that employing a continuous capture within a GMP single-use downstream processing chain is feasible and worthy of consideration among the biotech industry for future application to modality-diverse pipelines.
Collapse
|
28
|
Yehl CJ, Zydney AL. Single-use, single-pass tangential flow filtration using low-cost hollow fiber modules. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Accelerating Biologics Manufacturing by Modeling: Process Integration of Precipitation in mAb Downstream Processing. Processes (Basel) 2020. [DOI: 10.3390/pr8010058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The demand on biologics has been constantly rising over the past decades and has become crucial in modern medicine. Promising approaches to cope with widespread diseases like cancer and diabetes are gene therapy, plasmid DNA, virus-like particles, and exosomes. Due to progress that has been made in upstream processing (USP), difficulties arise in downstream processing and demand for innovative solutions. This work focuses on the integration of precipitation using a quality by design (QbD) approach for process development. Selective precipitation is achieved with PEG 4000 resulting in an HCP depletion of ≥80% respectively to IgG. Dissolution was executed with a sodium phosphate buffer (pH = 5/50 mM) reaching an IgG recovery of ≥95%. However, the central challenge in process development is still an optimal process design, which is transferable for a broad molecular variety of new products. This is where rigorous modeling becomes vital in order to generate digital twins to support early-stage process development and reduce the experimental overhead. Therefore, a model development and validation concept for construction of a process model for precipitation is also presented.
Collapse
|
30
|
Salt-enhanced permeabilization for monoclonal antibody precipitation and purification in a tubular reactor with a depth filtration membrane with advanced chromatin extraction. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Knudsen C, Ledsgaard L, Dehli RI, Ahmadi S, Sørensen CV, Laustsen AH. Engineering and design considerations for next-generation snakebite antivenoms. Toxicon 2019; 167:67-75. [DOI: 10.1016/j.toxicon.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
|
32
|
Laustsen AH. How can monoclonal antibodies be harnessed against neglected tropical diseases and other infectious diseases? Expert Opin Drug Discov 2019; 14:1103-1112. [PMID: 31364421 DOI: 10.1080/17460441.2019.1646723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Monoclonal antibody-based therapies now represent the single-largest class of molecules undergoing clinical investigation. Although a handful of different monoclonal antibodies have been clinically approved for bacterial and viral indications, including rabies, therapies based on monoclonal antibodies are yet to fully enter the fields of neglected tropical diseases and other infectious diseases. Areas covered: This review presents the current state-of-the-art in the development and use of monoclonal antibodies against neglected tropical diseases and other infectious diseases, including viral, bacterial, and parasitic infections, as well as envenomings by animal bites and stings. Additionally, a short section on mushroom poisonings is included. Key challenges for developing antibody-based therapeutics are discussed for each of these fields. Expert opinion: Neglected tropical diseases and other infectious diseases represent a golden opportunity for academics and technology developers for advancing our scientific capabilities within the understanding and design of antibody cross-reactivity, use of oligoclonal antibody mixtures for multi-target neutralization, novel immunization methodologies, targeting of evasive pathogens, and development of fundamentally novel therapeutic mechanisms of action. Furthermore, a huge humanitarian and societal impact is to gain by exploiting antibody technologies for the development of biotherapies against diseases, for which current treatment options are suboptimal or non-existent.
Collapse
Affiliation(s)
- Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Kongens Lyngby , Denmark
| |
Collapse
|
33
|
Ertekin Ö, Kaymak T, Pirinçci ŞŞ, Akçael E, Öztürk S. Aflatoxin-specific monoclonal antibody selection for immunoaffinity column development. Biotechniques 2019; 66:261-268. [PMID: 31124703 DOI: 10.2144/btn-2018-0143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibodies are the basic components of immunoanalytical systems used for detection of a wide range of analytes. Although there are some ground rules for antibody selection, analyte- and assay-specific criteria are the ones that determine the ultimate success of the immunoassays. In this study, we introduced an effective antibody selection procedure for the development of immunoaffinity columns for aflatoxins. The designed scheme puts emphasis on solvent- and matrix-related characterization steps and was used to comparatively evaluate eight monoclonal antibodies. The selected antibody was tolerant to 40% methanol, 20% acetonitrile, 30% acetone and 40% ethanol and did not interact with corn, red pepper or hazelnut extracts. Immunoaffinity columns developed with the selected antibody were validated by 15 independent aflatoxin analysis laboratories.
Collapse
Affiliation(s)
- Özlem Ertekin
- TÜBİTAK, The Scientific & Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering & Biotechnology Institute, 41470 Gebze, Kocaeli, Turkey
| | - Tuğrul Kaymak
- Republic of Turkey Ministry of Food Agriculture & Livestock, General Directorate of Food & Control, Turkey
| | - Şerife Şeyda Pirinçci
- TÜBİTAK, The Scientific & Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering & Biotechnology Institute, 41470 Gebze, Kocaeli, Turkey
| | - Esin Akçael
- TÜBİTAK, The Scientific & Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering & Biotechnology Institute, 41470 Gebze, Kocaeli, Turkey
| | - Selma Öztürk
- TÜBİTAK, The Scientific & Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering & Biotechnology Institute, 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
34
|
Patil R, Walther J. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:277-322. [PMID: 28265699 DOI: 10.1007/10_2016_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Collapse
Affiliation(s)
- Rohan Patil
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA
| | - Jason Walther
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA.
| |
Collapse
|
35
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
36
|
Martins DL, Sencar J, Hammerschmidt N, Tille B, Kinderman J, Kreil TR, Jungbauer A. Continuous Solvent/Detergent Virus Inactivation Using a Packed‐Bed Reactor. Biotechnol J 2019; 14:e1800646. [DOI: 10.1002/biot.201800646] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Duarte L. Martins
- Austria Centre for Industrial BiotechnologyVienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesMuthgasse 18 A‐1190 Vienna Austria
| | - Jure Sencar
- Austria Centre for Industrial BiotechnologyVienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesMuthgasse 18 A‐1190 Vienna Austria
| | - Nikolaus Hammerschmidt
- Austria Centre for Industrial BiotechnologyVienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesMuthgasse 18 A‐1190 Vienna Austria
| | - Björn Tille
- Department of VirologyGlobal Pathogen SafetyTakeda Vienna Austria
| | | | - Thomas R. Kreil
- Department of VirologyGlobal Pathogen SafetyTakeda Vienna Austria
| | - Alois Jungbauer
- Austria Centre for Industrial BiotechnologyVienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesMuthgasse 18 A‐1190 Vienna Austria
| |
Collapse
|
37
|
Becker M, Junghans L, Teleki A, Bechmann J, Takors R. The Less the Better: How Suppressed Base Addition Boosts Production of Monoclonal Antibodies With Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2019; 7:76. [PMID: 31032253 PMCID: PMC6470187 DOI: 10.3389/fbioe.2019.00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/25/2019] [Indexed: 11/30/2022] Open
Abstract
Biopharmaceutical production processes strive for the optimization of economic efficiency. Among others, the maximization of volumetric productivity is a key criterion. Typical parameters such as partial pressure of CO2 (pCO2) and pH are known to influence the performance although reasons are not yet fully elucidated. In this study the effects of pCO2 and pH shifts on the phenotypic performance were linked to metabolic and energetic changes. Short peak performance of qmAb (23 pg/cell/day) was achieved by early pCO2 shifts up to 200 mbar but followed by declining intracellular ATP levels to 2.5 fmol/cell and 80% increase of qLac. On the contrary, steadily rising qmAb could be installed by slight pH down-shifts ensuring constant cell specific ATP production (qATP) of 27 pmol/cell/day and high intracellular ATP levels of about 4 fmol/cell. As a result, maximum productivity was achieved combining highest qmAb (20 pg/cell/day) with maximum cell density and no lactate formation. Our results indicate that the energy availability in form of intracellular ATP is crucial for maintaining antibody synthesis and reacts sensitive to pCO2 and pH-process parameters typically responsible for inhomogeneities after scaling up.
Collapse
Affiliation(s)
- Max Becker
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Lisa Junghans
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Jan Bechmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
38
|
Junghans L, Teleki A, Wijaya AW, Becker M, Schweikert M, Takors R. From nutritional wealth to autophagy: In vivo metabolic dynamics in the cytosol, mitochondrion and shuttles of IgG producing CHO cells. Metab Eng 2019; 54:145-159. [PMID: 30930288 DOI: 10.1016/j.ymben.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
To fulfil the optimization needs of current biopharmaceutical processes the knowledge how to improve cell specific productivities is of outmost importance. This requires a detailed understanding of cellular metabolism on a subcellular level inside compartments such as cytosol and mitochondrion. Using IgG1 producing Chinese hamster ovary (CHO) cells, a pioneering protocol for compartment-specific metabolome analysis was applied. Various production-like growth conditions ranging from ample glucose and amino acid supply via moderate to severe nitrogen limitation were investigated in batch cultures. The combined application of quantitative metabolite pool analysis, 13C tracer studies and non-stationary flux calculations revealed that Pyr/H+ symport (MPC1/2) bore the bulk of the mitochondrial transport under ample nutrient supply. Glutamine limitation induced the concerted adaptation of the bidirectional Mal/aKG (OGC) and the Mal/HPO42- antiporter (DIC), even installing completely reversed shuttle fluxes. As a result, NADPH and ATP formation were adjusted to cellular needs unraveling the key role of cytosolic malic enzyme for NADPH production. Highest cell specific IgG1 productivities were closely correlated to a strong mitochondrial malate export according to the anabolic demands. The requirement to install proper NADPH supply for optimizing the production of monoclonal antibodies is clearly outlined. Interestingly, it was observed that mitochondrial citric acid cycle activity was always maintained enabling constant cytosolic adenylate energy charges at physiological levels, even under autophagy conditions.
Collapse
Affiliation(s)
- Lisa Junghans
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Andy Wiranata Wijaya
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Max Becker
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Schweikert
- Institute of Biomaterials and Biomolecular Systems, Department of Biobased Materials, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
39
|
Yang O, Prabhu S, Ierapetritou M. Comparison between Batch and Continuous Monoclonal Antibody Production and Economic Analysis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b04717] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ou Yang
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Siddharth Prabhu
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| |
Collapse
|
40
|
Yang O, Qadan M, Ierapetritou M. Economic Analysis of Batch and Continuous Biopharmaceutical Antibody Production: A Review. J Pharm Innov 2019; 14:1-19. [PMID: 30923586 PMCID: PMC6432653 DOI: 10.1007/s12247-018-09370-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE There is a growing interest in continuous biopharmaceutical processing due to the advantages of small footprint, increased productivity, consistent product quality, high process flexibility and robustness, facility cost-effectiveness, and reduced capital and operating cost. To support the decision making of biopharmaceutical manufacturing, comparisons between conventional batch and continuous processing are provided. METHODS Various process unit operations in different operating modes are summarized. Software implementation, as well as computational methods used, are analyzed pointing to the advantages and disadvantages that have been highlighted in the literature. Economic analysis methods and their applications in different parts of the processes are also discussed with examples from publications in the last decade. RESULTS The results of the comparison between batch and continuous process operation alternatives are discussed. Possible improvements in process design and analysis are recommended. The methods used here do not reflect Lilly's cost structures or economic evaluation methods. CONCLUSION This paper provides a review of the work that has been published in the literature on computational process design and economic analysis methods on continuous biopharmaceutical antibody production and its comparison with a conventional batch process.
Collapse
Affiliation(s)
- Ou Yang
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Maen Qadan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| |
Collapse
|
41
|
Burgstaller D, Jungbauer A, Satzer P. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow. Biotechnol Bioeng 2019; 116:1053-1065. [PMID: 30636284 PMCID: PMC6667901 DOI: 10.1002/bit.26922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
Continuous precipitation is a new unit operation for the continuous capture of antibodies. The capture step is based on continuous precipitation with PEG6000 and Zn++ in a tubular reactor integrated with a two‐stage continuous tangential flow filtration unit. The precipitate cannot be separated with centrifugation, because a highly compressed sediment results in poor resolubilization. We developed a new two‐stage tangential flow microfiltration method, where part of the concentrated retentate of the first stage was directly fed to the second stage, together with the wash buffer. Thus, the precipitate was concentrated and washed in a continuous process. We obtained 97% antibody purity, a 95% process yield during continuous operation, and a fivefold reduction in pre‐existing high‐molecular‐weight impurities. For other unit operations, surge tanks are often required, due to interruptions in the product mass flow out of the unit operation (e.g., the bind/elute mode in periodic counter‐current chromatography). Our setup required no surge tanks; thus, it provided a truly continuous antibody capture operation with uninterrupted product mass flow. Continuous virus inactivation and other flow‐through unit operations can be readily integrated downstream of the capture step to create truly continuous, integrated, downstream antibody processing without the need for hold tanks.
Collapse
Affiliation(s)
- Daniel Burgstaller
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Peter Satzer
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria
| |
Collapse
|
42
|
Bojar D, Fuhrer T, Fussenegger M. Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metab Eng 2018; 52:110-123. [PMID: 30468874 DOI: 10.1016/j.ymben.2018.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/01/2018] [Accepted: 11/17/2018] [Indexed: 01/22/2023]
Abstract
Capitalizing on the ability of mammalian cells to conduct complex post-translational modifications, most protein therapeutics are currently produced in cell culture systems. Addition of a signal peptide to the product protein enables its accumulation in the cell culture supernatant, but separation of the product from endogenously secreted proteins remains costly and labor-intensive. We considered that global downregulation of translation of non-product proteins would be an efficient strategy to minimize downstream processing requirements. Therefore, taking advantage of the ability of mammalian protein kinase R (PKR) to switch off most cellular translation processes in response to infection by viruses, we fused a caffeine-inducible dimerization domain to the catalytic domain of PKR. Addition of caffeine to this construct results in homodimerization and activation of PKR, effectively rewiring rapid global translational downregulation to the addition of the stimulus in a dose-dependent manner. Then, to protect translation of the target therapeutic, we screened viral and cellular internal ribosomal entry sites (IRESes) known or suspected to be resistant to PKR-induced translational stress. After choosing the best-in-class Seneca valley virus (SVV) IRES, we additionally screened for IRES transactivation factors (ITAFs) as well as for supplementary small molecules to further boost the production titer of the product protein under conditions of global translational downregulation. Importantly, the residual global translation activity of roughly 10% under maximal downregulation is sufficient to maintain cellular viability during a production timeframe of at least five days. Standard industrially used adherent as well as suspension-adapted cell lines transfected with this synthetic biology-inspired Protein Kinase R-Enhanced Protein Production (PREPP) system could produce several medicinally relevant protein therapeutics, such as the blockbuster drug rituximab, in substantial quantities and with significantly higher purity than previous culture technologies. We believe incorporation of such purity-by-design technology in the production process will alleviate downstream processing bottlenecks in future biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Daniel Bojar
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Tobias Fuhrer
- ETH Zurich, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland; Faculty of Life Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
43
|
Swartz AR, Chen W. SpyTag/SpyCatcher Functionalization of E2 Nanocages with Stimuli-Responsive Z-ELP Affinity Domains for Tunable Monoclonal Antibody Binding and Precipitation Properties. Bioconjug Chem 2018; 29:3113-3120. [PMID: 30096233 DOI: 10.1021/acs.bioconjchem.8b00458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E2 nanocages functionalized with Z-domain-elastin-like polypeptide affinity ligands (Z-ELP40) using Sortase A (SrtA) ligation have been shown to be a promising scaffold for purifying monoclonal antibodies (mAbs) based on affinity precipitation. However, the reversible nature of SrtA reaction has been attributed to the low ligation efficiency (<25%) and has significantly limited the practical utility of the technology. Here, we reported an improved conjugation platform using the SpyTag/SpyCatcher pair to form a spontaneous isopeptide bond between SpyTag-E2 and Z-ELP-SpyCatcher fusion proteins of two different ELP chain-lengths. Using this system, E2 ligation efficiencies exceeding 90% were obtained with both 40- and 80-repeat Z-ELP-SpyCatcher fusions. This enabled the production of nanocages fully functionalized with Z-ELP for improved aggregation and mAb binding. Compared to the 50% decorated Z-ELP40-E2 nanocages produced by SrtA ligation, the fully decorated Z-ELP80-Spy-E2 nanocages exhibited a 10 °C lower transition temperature and a 2-fold higher mAb binding capacity. The improved transition property of the longer Z-ELP80 backbone allowed for >90% recovery of Z-ELP80-Spy-E2 nanocages at room temperature using 0.1 M ammonium sulfate after mAb elution. The flexibility of customizing different affinity domains onto the SpyTag-E2 scaffold should expand our ability to purify other non-mAb target proteins based on affinity precipitation.
Collapse
Affiliation(s)
- Andrew R Swartz
- Department of Chemical and Biomolecular Engineering , University of Delaware , Colburn Laboratory, 150 Academy Street , Newark , Delaware 19716 , United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering , University of Delaware , Colburn Laboratory, 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
44
|
Laustsen AH, Dorrestijn N. Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms. Toxins (Basel) 2018; 10:E309. [PMID: 30065185 PMCID: PMC6115708 DOI: 10.3390/toxins10080309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that requires immediate attention. Conventional plasma-derived snakebite antivenoms have existed for more than 120 years and have been instrumental in saving thousands of lives. However, both a need and an opportunity exist for harnessing biotechnology and modern drug development approaches to develop novel snakebite antivenoms with better efficacy, safety, and affordability. For this to be realized, though, development approaches, clinical testing, and manufacturing must be feasible for any novel treatment modality to be brought to the clinic. Here, we present engineering, manufacturing, and regulatory considerations that need to be taken into account for any development process for a novel antivenom product, with a particular emphasis on novel antivenoms based on mixtures of monoclonal antibodies. We highlight key drug development challenges that must be addressed, and we attempt to outline some of the important shifts that may have to occur in the ways snakebite antivenoms are designed and evaluated.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Netty Dorrestijn
- Utrecht Center for Affordable Biotherapeutics, Department of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
45
|
Arunkumar A, Zhang J, Singh N, Ghose S, Li ZJ. Ultrafiltration behavior of partially retained proteins and completely retained proteins using equally‐staged single pass tangential flow filtration membranes. Biotechnol Prog 2018; 34:1137-1148. [DOI: 10.1002/btpr.2671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Abhiram Arunkumar
- Global Product Development and SupplyBristol‐Myers Squibb and Company, 38 Jackson RoadDevens MA 01434
| | - Junyan Zhang
- Global Product Development and SupplyBristol‐Myers Squibb and Company, 38 Jackson RoadDevens MA 01434
| | - Nripen Singh
- Global Product Development and SupplyBristol‐Myers Squibb and Company, 38 Jackson RoadDevens MA 01434
| | - Sanchayita Ghose
- Global Product Development and SupplyBristol‐Myers Squibb and Company, 38 Jackson RoadDevens MA 01434
| | - Zheng Jian Li
- Global Product Development and SupplyBristol‐Myers Squibb and Company, 38 Jackson RoadDevens MA 01434
| |
Collapse
|
46
|
Current state of the art in continuous bioprocessing. Biotechnol Lett 2018; 40:1303-1309. [DOI: 10.1007/s10529-018-2593-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
|
47
|
Potential of Continuous Manufacturing for Liposomal Drug Products. Biotechnol J 2018; 14:e1700740. [DOI: 10.1002/biot.201700740] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/30/2018] [Indexed: 01/25/2023]
|
48
|
Karlberg M, von Stosch M, Glassey J. Exploiting mAb structure characteristics for a directed QbD implementation in early process development. Crit Rev Biotechnol 2018. [DOI: 10.1080/07388551.2017.1421899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Micael Karlberg
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Zobel-Roos S, Stein D, Strube J. Evaluation of Continuous Membrane Chromatography Concepts with an Enhanced Process Simulation Approach. Antibodies (Basel) 2018; 7:E13. [PMID: 31544865 PMCID: PMC6698847 DOI: 10.3390/antib7010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/26/2023] Open
Abstract
Modern biopharmaceutical products strive for small-scale, low-cost production. Continuous chromatography has shown to be a promising technology because it assures high-capacity utilization, purity and yield increases, and lower facility footprint. Membrane chromatography is a fully disposable low-cost alternative to bead-based chromatography with minor drawbacks in terms of capacity. Hence, continuous membrane chromatography should have a high potential. The evaluation of continuous processes goes often along with process modeling. Only few experiments with small feed demand need to be conducted to estimate the model parameters. Afterwards, a variety of different process setups and working points can be analyzed in a very short time, making the approach very efficient. Since the available modeling approaches for membrane chromatography modules did not fit the used design, a new modeling approach is shown. This combines the general rate model with an advanced fluid dynamic distribution. Model parameter determination and model validation were done with industrial cell cultures containing Immunoglobulin G (IgG). The validated model was used to evaluate the feasibility of the integrated Counter Current Chromatography (iCCC) concept and the sequential chromatography concept for membrane adsorber modules, starting with a laboratory-type module used for sample preparation. A case study representing a fed-batch reactor with a capacity from 20 to 2000 L was performed. Compared to batch runs, a 71% higher capacity, 48.5% higher productivity, and 38% lower eluent consumption could be achieved.
Collapse
Affiliation(s)
- Steffen Zobel-Roos
- Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany.
| | - Dominik Stein
- Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany.
| | - Jochen Strube
- Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany.
| |
Collapse
|
50
|
Hong MS, Severson KA, Jiang M, Lu AE, Love JC, Braatz RD. Challenges and opportunities in biopharmaceutical manufacturing control. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|