1
|
Wang T, Liao C, Jiang Z, Wang J, Ma Y, Lin H, Zhang Y, Lv H, Zhang X, Hu Y, Yang Y, Zhou G. Ratiometric fluorescent sensor with large pseudo-Stokes shifts for precise sensing and imaging of pH without interferential background fluorescence. Talanta 2024; 266:125041. [PMID: 37556950 DOI: 10.1016/j.talanta.2023.125041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Endowing fluorescent pH sensors with large Stokes shifts promises to resolve interferential background fluorescence in practice, and yet few such method has been reported, owing to lack of luminescent materials with large Stokes shifts used in fluorescent sensors. Herein, we elaborately designed NaGdF4:Ce@NaGdF4:Nd@NaYF4:Eu core-double shells (CDS) lanthanide-doped fluoride nanoparticles (LFNPs), employing Gd3+-mediated energy migration and interfacial energy transfer to realize intense red and NIR emissions under 254 nm irradiation, and pseudo-Stokes shifts of which reached up to striking 361 nm and 610 nm, respectively. The CDS LFNPs collaborated with absorption-based pH indicator bromocresol green to from a novel fluorescent sensor film, and employing low-cost dual chip RGB-NIR camera to precisely record luminescence signals. On the basis of inner-filter effects, this senor system enabled accurate ratiometric read-out of pH value ranging from 5 to 6 (pKa ± 0.5), according to intensity ratios of pH-sensitive red emissions and referenced NIR emissions, avoiding common errors (e.g., fluctuant light sources). Notably, the large pseudo-Stokes shifts allowed red and NIR emissions far from the interfering background fluorescence possessing relatively small Stokes shifts, ensuring elevated signal-to-noise ratio and accurate pH determination. Therefore, the devised pH sensor system based on the CDS LFNPs exhibited sufficient accuracy in autofluorescent real samples (e.g., algae, serum), revealing a novel way of employing large pseudo-Stokes shifts to realize the background-free pH measurement and 2D imaging.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Chuan Liao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Zike Jiang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China.
| | - Jing Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yanyan Ma
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China.
| | - Haitao Lin
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yimeng Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Hongmin Lv
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Xiaonan Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yimeng Hu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yingdong Yang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Guangjun Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
2
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
3
|
Consolati T, Bolivar JM, Petrasek Z, Berenguer J, Hidalgo A, Guisan JM, Nidetzky B. Intraparticle pH Sensing Within Immobilized Enzymes: Immobilized Yellow Fluorescent Protein as Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Particles. Methods Mol Biol 2020; 2100:319-333. [PMID: 31939133 DOI: 10.1007/978-1-0716-0215-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
pH is a fundamental variable in enzyme catalysis and its measurement therefore is crucial for understanding and optimizing enzyme-catalyzed reactions. Whereas measurements within homogeneous bulk liquid solution are prominently used, enzymes immobilized inside porous particles often suffer from pH gradients due to partition effects and heterogeneously catalyzed biochemical reactions. Unfortunately, the measurements of intraparticle pH are not available due to the lack of useful suitable methodologies; as a consequence the biocatalyst characterization is hampered. Here, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is described. A genetically encoded ratiometric pH indicator, the superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of enzyme carrier supports. By using controlled, tailor-made immobilization, sYFP is homogeneously distributed within these materials, and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. The hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix is used to show the monitoring of evolution of internal pH. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of the internally heterogeneous environment of immobilized enzymes into solid particles.
Collapse
Affiliation(s)
- Tanja Consolati
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Zdenek Petrasek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Jose Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC), Madrid, Spain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC), Madrid, Spain
| | - Jose M Guisan
- Institute of Catalysis and Petroleum Chemistry (ICP-CSIC), Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, Graz, Austria.
| |
Collapse
|
4
|
Bolivar JM, Nidetzky B. The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules 2019; 24:molecules24193460. [PMID: 31554193 PMCID: PMC6803829 DOI: 10.3390/molecules24193460] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The liquid milieu in which enzymes operate when they are immobilized in solid materials can be quite different from the milieu in bulk solution. Important differences are in the substrate and product concentration but also in pH and ionic strength. The internal milieu for immobilized enzymes is affected by the chemical properties of the solid material and by the interplay of reaction and diffusion. Enzyme performance is influenced by the internal milieu in terms of catalytic rate (“activity”) and stability. Elucidation, through direct measurement of differences in the internal as compared to the bulk milieu is, therefore, fundamentally important in the mechanistic characterization of immobilized enzymes. The deepened understanding thus acquired is critical for the rational development of immobilized enzyme preparations with optimized properties. Herein we review approaches by opto-chemical sensing to determine the internal milieu of enzymes immobilized in porous particles. We describe analytical principles applied to immobilized enzymes and focus on the determination of pH and the O2 concentration. We show measurements of pH and [O2] with spatiotemporal resolution, using in operando analysis for immobilized preparations of industrially important enzymes. The effect of concentration gradients between solid particle and liquid bulk on enzyme performance is made evident and quantified. Besides its use in enzyme characterization, the method can be applied to the development of process control strategies.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
5
|
Consolati T, Bolivar JM, Petrasek Z, Berenguer J, Hidalgo A, Guisán JM, Nidetzky B. Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6858-6868. [PMID: 29384355 DOI: 10.1021/acsami.7b16639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.
Collapse
Affiliation(s)
- Tanja Consolati
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Zdenek Petrasek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Jose Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC) , Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC) , Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Jose M Guisán
- Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , C/Marie Curie, 2, Cantoblanco, 28049 Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
6
|
Benítez-Mateos AI, Nidetzky B, Bolivar JM, López-Gallego F. Single-Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201701590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
- IKERBASQUE; Basque Foundation for Science; Bilbao Spain
| |
Collapse
|
7
|
Jungbauer A, Lee SY. Editorial: Biotechnology Journal brings more than biotechnology. Biotechnol J 2016; 10:1663-5. [PMID: 26912076 DOI: 10.1002/biot.201500581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy.
Collapse
|
8
|
Begemann J, Ohs RB, Ogolong AB, Eberhard W, Ansorge‐Schumacher MB, Spiess AC. Model-based analysis of a reactor and control concept for oxidoreductions based on exhaust CO 2 -measurement. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|