1
|
A reversed phase HPLC method for the quantification of HIV gp145 glycoprotein levels from cell culture supernatants. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122562. [PMID: 33571843 DOI: 10.1016/j.jchromb.2021.122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
A reversed phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of recombinant HIV-1 gp145 produced in CHO-K1 cells, as measured directly from culture supernatants. Samples were diluted in 50% D-PBS and 50% PowerCHO-2 (PC2) spent medium, and resolved on a Zorbax 300SB-C8 Rapid Resolution (2.1 × 50 mm, 3.5 µm) column, fitted with a C8 guard column (Zorbax 300SB-C8, 2.1 × 12.5 mm, 5 µm), using 0.1% TFA and 2% n-propanol in LC-MS water as mobile phase A and 0.1% TFA, 70% isopropanol, and 20% acetonitrile in LC-MS water as mobile phase B. The column temperature was 80 °C, the flow rate was 0.4 mL/min and the absorbance was monitored at 280 nm. The procedures and capabilities of the method were evaluated against the criteria for linearity, limit of detection (LOD), accuracy, repeatability, and robustness as defined by the International Conference on Harmonization (ICH) 2005 Q2(R1) guidelines. Two different variants of the HIV-1 envelope protein (Env), CO6980v0c22 gp145 and SF162 gp140, were analyzed and their retention times were found to be different. The method showed good linearity (R2 = 0.9996), a lower LOD of 2.4 µg/mL, and an average recovery of 101%. The analysis includes measurements of accuracy, inter-user precision, and robustness. Overall, we present a RP-HPLC method that could be applied for the quantitation of cell culture titers for this and other variants of HIV Env following ICH guidelines.
Collapse
|
2
|
Knockout of sialidase and pro-apoptotic genes in Chinese hamster ovary cells enables the production of recombinant human erythropoietin in fed-batch cultures. Metab Eng 2019; 57:182-192. [PMID: 31785386 DOI: 10.1016/j.ymben.2019.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2-44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.
Collapse
|
3
|
Chung S, Tian J, Tan Z, Chen J, Zhang N, Huang Y, Vandermark E, Lee J, Borys M, Li ZJ. Modulating cell culture oxidative stress reduces protein glycation and acidic charge variant formation. MAbs 2019; 11:205-216. [PMID: 30602334 DOI: 10.1080/19420862.2018.1537533] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Controlling acidic charge variants is critical for an industrial bioprocess due to the potential impact on therapeutic efficacy and safety. Achieving a consistent charge variant profile at manufacturing scale remains challenging and may require substantial resources to investigate effective control strategies. This is partially due to incomplete understanding of the underlying causes for charge variant formation during the cell culture process. To address this gap, we examined the effects of four process input factors (temperature, iron concentration, feed media age, and antioxidant (rosmarinic acid) concentration) on charge variant profile. These factors were found to affect the charge profile by modulating the cell culture oxidative state. Process conditions with higher acidic peaks corresponded to elevated supernatant peroxide concentration, intracellular reactive oxygen species (ROS) levels, or both. Changes in glycation level were the primary cause of the charge heterogeneity, and for the first time, supernatant peroxide was found to positively correlate with glycation levels. Based on these findings, a novel mathematical model was developed to demonstrate that the rate of acidic species formation was exponentially proportional to the concentrations of supernatant peroxide and protein product. This work provides critical insights into charge variant formation during the cell culture process and highlights the importance of modulating of cell culture oxidative stress for charge variant control.
Collapse
Affiliation(s)
- Stanley Chung
- a Department of Chemical Engineering , Northeastern University , Boston , MA
| | - Jun Tian
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| | - Zhijun Tan
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| | - Jie Chen
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| | - Na Zhang
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| | - Yunping Huang
- c Mass Spectrometry COE 1, Global Product Development and Supply , Bristol-Myers Squibb Company , Pennington , RJ
| | - Erik Vandermark
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| | - Jongchan Lee
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| | - Michael Borys
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| | - Zheng Jian Li
- b Biologics Development, Global Product Development and Supply , Bristol-Myers Squibb Company , Devens , MA
| |
Collapse
|
4
|
Amann T, Hansen AH, Kol S, Hansen HG, Arnsdorf J, Nallapareddy S, Voldborg B, Lee GM, Andersen MR, Kildegaard HF. Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metab Eng 2018; 52:143-152. [PMID: 30513349 DOI: 10.1016/j.ymben.2018.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023]
Abstract
Recombinant Chinese hamster ovary (CHO) cells are able to provide biopharmaceuticals that are essentially free of human viruses and have N-glycosylation profiles similar, but not identical, to humans. Due to differences in N-glycan moieties, two members of the serpin superfamily, alpha-1-antitrypsin (A1AT) and plasma protease C1 inhibitor (C1INH), are currently derived from human plasma for treating A1AT and C1INH deficiency. Deriving therapeutic proteins from human plasma is generally a cost-intensive process and also harbors a risk of transmitting infectious particles. Recombinantly produced A1AT and C1INH (rhA1AT, rhC1INH) decorated with humanized N-glycans are therefore of clinical and commercial interest. Here, we present engineered CHO cell lines producing rhA1AT or rhC1INH with fully humanized N-glycosylation profiles. This was achieved by combining CRISPR/Cas9-mediated disruption of 10 gene targets with overexpression of human ST6GAL1. We were able to show that the N-linked glyco-structures of rhA1AT and rhC1INH are homogeneous and similar to the structures obtained from plasma-derived A1AT and C1INH, marketed as Prolastin®-C and Cinryze®, respectively. rhA1AT and rhC1INH produced in our glyco-engineered cell line showed no detectable differences to their plasma-purified counterparts on SDS-PAGE and had similar enzymatic in vitro activity. The work presented here shows the potential of expanding the glyco-engineering toolbox for CHO cells to produce a wider variety of glycoproteins with fully humanized N-glycan profiles. We envision replacing plasma-derived A1AT and C1INH with recombinant versions and thereby decreasing our dependence on human donor blood, a limited and possibly unsafe protein source for patients.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Holmgaard Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Stefan Kol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Johnny Arnsdorf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Saranya Nallapareddy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bjørn Voldborg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Pristovšek N, Hansen HG, Sergeeva D, Borth N, Lee GM, Andersen MR, Kildegaard HF. Using Titer and Titer Normalized to Confluence Are Complementary Strategies for Obtaining Chinese Hamster Ovary Cell Lines with High Volumetric Productivity of Etanercept. Biotechnol J 2018; 13:e1700216. [DOI: 10.1002/biot.201700216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/15/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB); Muthgasse 11 1190 Vienna Austria
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
- Department of Biological Sciences, KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark; Søltofts Plads, Building 221 2800 Kgs. Lyngby Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| |
Collapse
|
6
|
Ji Q, Guo C, Xie C, Wu Y, Zhang P, Li H, Lu Y. Genetically engineered cell lines for α1-antitrypsin expression. Biotechnol Lett 2017; 39:1471-1476. [PMID: 28721587 DOI: 10.1007/s10529-017-2391-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To establish genetically modified cell lines that can produce functional α1-antitrypsin (AAT), by CRISPR/Cas9-assisted homologous recombination. RESULTS α1-Antitrypsin deficiency (AATD) is a monogenic heritable disease that often results in lungs and liver damage. Current augmentation therapy is expensive and in short of supply. To develop a safer and more effective therapeutic strategy for AATD, we integrated the AAT gene (SERPINA1, NG_008290.1) into the AAVS1 locus of human cell line HEK293T and assessed the safety and efficacy of CRISPR/Cas9 on producing potential therapeutic cell lines. Cell clones obtained had the AAT gene integrated at the AAVS1 locus and secreted approx. 0.04 g/l recombinant AAT into the medium. Moreover, the secreted AAT showed an inhibitory activity that is comparable to plasma AAT. CONCLUSIONS CRISPR/Cas9-mediated engineering of human cells is a promising alternative for generating isogenic cell lines with consistent AAT production. This work sheds new light on the generation of therapeutic liver stem cells for AATD.
Collapse
Affiliation(s)
- Qianqian Ji
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Caiping Guo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, People's Republic of China
| | - Chen Xie
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, People's Republic of China
| | - Yingdan Wu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, People's Republic of China
| | - Pei Zhang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, People's Republic of China
| | - Hui Li
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, People's Republic of China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China. .,, No. 135, Xin gang Xi Road, Guang Zhou, 510275, People's Republic of China.
| |
Collapse
|