1
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2024. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Takiguchi S, Kambara F, Tani M, Sugiura T, Kawano R. Simultaneous Recognition of Over- and Under-Expressed MicroRNAs Using Nanopore Decoding. Anal Chem 2023; 95:14675-14685. [PMID: 37675494 PMCID: PMC10797591 DOI: 10.1021/acs.analchem.3c02560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
This paper describes a strategy for simultaneous recognition of over- and under-expressed microRNAs (miRNAs) using the method of signal classification-based nanopore decoding. MiRNA has attracted attention as a promising biomarker for cancer diagnosis owing to its cancer-type-specific expression patterns. While nanopore technology has emerged as a simple and label-free method to detect miRNAs and their expression patterns, recognizing patterns involving simultaneous over/under-expression is still challenging due to the inherent working principles. Here, inspired by the sequence design for DNA computation with nanopore decoding, we designed diagnostic DNA probes targeting two individual over/under-expressed miRNAs in the serum of oral squamous cell carcinoma. Through nanopore measurements, our designed probes exhibited characteristic current signals depending on the hybridized miRNA species, which were plotted on the scatter plot of duration versus current blocking ratio. The classified signals reflected the relative abundance of target miRNAs, thereby enabling successful pattern recognition of over/under-expressed miRNAs, even when using clinical samples. We believe that our method paves the way for miRNA-targeting simple diagnosis as a liquid biopsy.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Fumika Kambara
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Mika Tani
- Department
of Maxillofacial Diagnostic and Surgical Science, Field of Oral and
Maxillofacial Rehabilitation, Graduate School of Medical and Dental
Science, Kagoshima University, Kagoshima 890-8544, Japan
| | - Tsuyoshi Sugiura
- Department
of Maxillofacial Diagnostic and Surgical Science, Field of Oral and
Maxillofacial Rehabilitation, Graduate School of Medical and Dental
Science, Kagoshima University, Kagoshima 890-8544, Japan
- Division
of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate
School of Dentistry, Tohoku University, Miyagi 980-8577, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Tada A, Takeuchi N, Shoji K, Kawano R. Nanopore Filter: A Method for Counting and Extracting Single DNA Molecules Using a Biological Nanopore. Anal Chem 2023; 95:9805-9812. [PMID: 37279035 PMCID: PMC10797584 DOI: 10.1021/acs.analchem.3c00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
This paper describes a method for the real-time counting and extraction of DNA molecules at the single-molecule level by nanopore technology. As a powerful tool for electrochemical single-molecule detection, nanopore technology eliminates the need for labeling or partitioning sample solutions at the femtoliter level. Here, we attempt to develop a DNA filtering system utilizing an α-hemolysin (αHL) nanopore. This system comprises two droplets, one filling with and one emptying DNA molecules, separated by a planar lipid bilayer containing αHL nanopores. The translocation of DNA through the nanopores is observed by measuring the channel current, and the number of translocated molecules can also be verified by quantitative polymerase chain reaction (qPCR). However, we found that the issue of contamination seems to be an almost insolvable problem in single-molecule counting. To tackle this problem, we tried to optimize the experimental environment, reduce the volume of solution containing the target molecule, and use the PCR clamp method. Although further efforts are still needed to achieve a single-molecule filter with electrical counting, our proposed method shows a linear relationship between the electrical counting and qPCR estimation of the number of DNA molecules.
Collapse
Affiliation(s)
- Asuka Tada
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nanami Takeuchi
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kan Shoji
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department
of Mechanical Engineering, Nagaoka University
of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Fujita S, Kawamura I, Kawano R. Cell-Free Expression of De Novo Designed Peptides That Form β-Barrel Nanopores. ACS NANO 2023; 17:3358-3367. [PMID: 36731872 PMCID: PMC9979648 DOI: 10.1021/acsnano.2c07970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Nanopore sensing has attracted much attention as a rapid, simple, and label-free single-molecule detection technology. To apply nanopore sensing to extensive targets including polypeptides, nanopores are required to have a size and structure suitable for the target. We recently designed a de novo β-barrel peptide nanopore (SVG28) that constructs a stable and monodispersely sized nanopore. To develop the sizes and functionality of peptide nanopores, systematic exploration is required. Here we attempt to use a cell-free synthesis system that can readily express peptides using transcription and translation. Hydrophilic variants of SVG28 were designed and expressed by the PURE system. The peptides form a monodispersely sized nanopore, with a diameter 1.1 or 1.5 nm smaller than that of SVG28. Such cell-free synthesizable peptide nanopores have the potential to enable the systematic custom design of nanopores and comprehensive sequence screening of nanopore-forming peptides.
Collapse
Affiliation(s)
- Shoko Fujita
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo184-8588, Japan
| | - Izuru Kawamura
- Graduate
School of Engineering Science, Yokohama
National University, Yokohama240-8501, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo184-8588, Japan
| |
Collapse
|
5
|
Ratre P, Nazeer N, Kumari R, Thareja S, Jain B, Tiwari R, Kamthan A, Srivastava RK, Mishra PK. Carbon-Based Fluorescent Nano-Biosensors for the Detection of Cell-Free Circulating MicroRNAs. BIOSENSORS 2023; 13:226. [PMID: 36831992 PMCID: PMC9953975 DOI: 10.3390/bios13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Currently, non-communicable diseases (NCDs) have emerged as potential risks for humans due to adopting a sedentary lifestyle and inaccurate diagnoses. The early detection of NCDs using point-of-care technologies significantly decreases the burden and will be poised to transform clinical intervention and healthcare provision. An imbalance in the levels of circulating cell-free microRNAs (ccf-miRNA) has manifested in NCDs, which are passively released into the bloodstream or actively produced from cells, improving the efficacy of disease screening and providing enormous sensing potential. The effective sensing of ccf-miRNA continues to be a significant technical challenge, even though sophisticated equipment is needed to analyze readouts and expression patterns. Nanomaterials have come to light as a potential solution as they provide significant advantages over other widely used diagnostic techniques to measure miRNAs. Particularly, CNDs-based fluorescence nano-biosensors are of great interest. Owing to the excellent fluorescence characteristics of CNDs, developing such sensors for ccf-microRNAs has been much more accessible. Here, we have critically examined recent advancements in fluorescence-based CNDs biosensors, including tools and techniques used for manufacturing these biosensors. Green synthesis methods for scaling up high-quality, fluorescent CNDs from a natural source are discussed. The various surface modifications that help attach biomolecules to CNDs utilizing covalent conjugation techniques for multiple applications, including self-assembly, sensing, and imaging, are analyzed. The current review will be of particular interest to researchers interested in fluorescence-based biosensors, materials chemistry, nanomedicine, and related fields, as we focus on CNDs-based nano-biosensors for ccf-miRNAs detection applications in the medical field.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Nazim Nazeer
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Bulbul Jain
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
6
|
Takiguchi S, Kawano R. MicroRNA Detection at Femtomolar Concentrations with Isothermal Amplification and a Biological Nanopore. Methods Mol Biol 2023; 2630:67-74. [PMID: 36689176 DOI: 10.1007/978-1-0716-2982-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nanopore sensing is a powerful tool for the rapid and label-free detection of oligonucleotides, including microRNA. When moving towards actual diagnostic applications, detection of microRNA at low concentrations is one of the significant issues to be addressed. We here describe a method to detect ultra-low concentrations of microRNA using isothermal amplification and nanopore technology. Using this method, the amplified DNA from 1 fM of target microRNA can be measured by a nanopore measurement.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan.
| |
Collapse
|
7
|
Zhu J, Kong J, Keyser UF, Wang E. Parallel DNA circuits by autocatalytic strand displacement and nanopore readout. NANOSCALE 2022; 14:15507-15515. [PMID: 36227155 DOI: 10.1039/d2nr04048d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA nanotechnology provides a unique opportunity for molecular computation, with strand displacement reactions enabling controllable reorganization of nanostructures. Additional DNA strand exchange strategies with high selectivity for input will enable novel complex systems including biosensing applications. Herein, we propose an autocatalytic strand displacement (ACSD) circuit: initiated by DNA breathing and accelerated by a seesaw catalytic reaction, ACSD ensures that only the correct base sequence starts the catalytic cycle. Analogous to an electronic circuit with a variable resistor, two ACSD reactions with different rates are connected in parallel to mimic a parallel circuit containing branches with different resistances. Finally, we introduce a multiplexed nanopore sensing platform to report the output results of a parallel path selection system at the single-molecule level. By combining the ACSD strategy with fast and sensitive single-molecule nanopore readout, a new generation of DNA-based computing tools is established.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Jinglin Kong
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|
8
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
9
|
Takeuchi N, Hiratani M, Kawano R. Pattern Recognition of microRNA Expression in Body Fluids Using Nanopore Decoding at Subfemtomolar Concentrations. JACS AU 2022; 2:1829-1838. [PMID: 36032536 PMCID: PMC9400052 DOI: 10.1021/jacsau.2c00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper describes a method for detecting microRNA (miRNA) expression patterns using the nanopore-based DNA computing technology. miRNAs have shown promise as markers for cancer diagnosis due to their cancer type specificity, and therefore simple strategies for miRNA pattern recognition are required. We propose a system for pattern recognition of five types of miRNAs overexpressed in bile duct cancer (BDC). The information of miRNAs from BDC is encoded in diagnostic DNAs (dgDNAs) and decoded electrically by nanopore analysis. With this system, we succeeded in the label-free detection of miRNA expression patterns from the plasma of BDC patients. Moreover, our dgDNA-miRNA complexes can be detected at subfemtomolar concentrations, which is a significant improvement compared to previously reported limits of detection (∼10-12 M) for similar analytical platforms. Nanopore decoding of dgDNA-encoded information represents a promising tool for simple and early cancer diagnosis.
Collapse
|
10
|
Wang L, Wang H, Chen X, Zhou S, Wang Y, Guan X. Chemistry solutions to facilitate nanopore detection and analysis. Biosens Bioelectron 2022; 213:114448. [PMID: 35716643 DOI: 10.1016/j.bios.2022.114448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Characteristic ionic current modulations will be produced in a single molecule manner during the communication of individual molecules with a nanopore. Hence, the information regarding the length, composition, and structure of a molecule can be extracted from deciphering the electrical message. However, until now, achieving a satisfactory resolution for observation and quantification of a target analyte in a complex system remains a nontrivial task. In this review, we summarize the progress and especially the recent advance in utilizing chemistry solutions to facilitate nanopore detection and analysis. The discussed chemistry solutions are classified into several major categories, including covalent/non-covalent chemistry, redox chemistry, displacement chemistry, back titration chemistry, chelation chemistry, hydrolysis-chemistry, and click chemistry. Considering the significant success of using chemical reaction-assisted nanopore sensing strategies to improve sensor sensitivity & selectivity and to study various topics, other non-chemistry based methodologies can undoubtedly be employed by nanopore sensors to explore new applications in the interdisciplinary area of chemistry, biology, materials, and nanotechnology.
Collapse
Affiliation(s)
- Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
11
|
Zhang M, Chen C, Zhang Y, Geng J. Biological nanopores for sensing applications. Proteins 2022; 90:1786-1799. [PMID: 35092317 DOI: 10.1002/prot.26308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
Biological nanopores are proteins with transmembrane pore that can be embedded in lipid bilayer. With the development of single-channel current measurement technologies, biological nanopores have been reconstituted into planar lipid bilayer and used for single-molecule sensing of various analytes and events such as single-molecule DNA sensing and sequencing. To improve the sensitivity for specific analytes, various engineered nanopore proteins and strategies are deployed. Here, we introduce the origin and principle of nanopore sensing technology as well as the structure and associated properties of frequently used protein nanopores. Furthermore, sensing strategies for different applications are reviewed, with focus on the alteration of buffer condition, protein engineering, and deployment of accessory proteins and adapter-assisted sensing. Finally, outlooks for de novo design of nanopore and nanopore beyond sensing are discussed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjing Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Geng
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Shimizu K, Mijiddorj B, Usami M, Mizoguchi I, Yoshida S, Akayama S, Hamada Y, Ohyama A, Usui K, Kawamura I, Kawano R. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. NATURE NANOTECHNOLOGY 2022; 17:67-75. [PMID: 34811552 PMCID: PMC8770118 DOI: 10.1038/s41565-021-01008-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
The amino-acid sequence of a protein encodes information on its three-dimensional structure and specific functionality. De novo design has emerged as a method to manipulate the primary structure for the development of artificial proteins and peptides with desired functionality. This paper describes the de novo design of a pore-forming peptide, named SV28, that has a β-hairpin structure and assembles to form a stable nanopore in a bilayer lipid membrane. This large synthetic nanopore is an entirely artificial device for practical applications. The peptide forms multidispersely sized nanopore structures ranging from 1.7 to 6.3 nm in diameter and can detect DNAs. To form a monodispersely sized nanopore, we redesigned the SV28 by introducing a glycine-kink mutation. The resulting redesigned peptide forms a monodisperse pore with a diameter of 1.7 nm leading to detection of a single polypeptide chain. Such de novo design of a β-hairpin peptide has the potential to create artificial nanopores, which can be size adjusted to a target molecule.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Batsaikhan Mijiddorj
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Masataka Usami
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Ikuro Mizoguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Shuhei Yoshida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Shiori Akayama
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Yoshio Hamada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Akifumi Ohyama
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan.
| |
Collapse
|
13
|
Miyagi M, Takiguchi S, Hakamada K, Yohda M, Kawano R. Single polypeptide detection using a translocon EXP2 nanopore. Proteomics 2021; 22:e2100070. [PMID: 34411416 DOI: 10.1002/pmic.202100070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
DNA sequencing using nanopores has already been achieved and commercialized; the next step in advancing nanopore technology is towards protein sequencing. Although trials have been reported for discriminating the 20 amino acids using biological nanopores and short peptide carriers, it remains challenging. The size compatibility between nanopores and peptides is one of the issues to be addressed. Therefore, exploring biological nanopores that are suitable for peptide sensing is key in achieving amino acid sequence determination. Here, we focus on EXP2, the transmembrane protein of a translocon from malaria parasites, and describe its pore-forming properties in the lipid bilayer. EXP2 mainly formed a nanopore with a diameter of 2.5 nm assembled from 7 monomers. Using the EXP2 nanopore allowed us to detect poly-L-lysine (PLL) at a single-molecule level. Furthermore, the EXP2 nanopore has sufficient resolution to distinguish the difference in molecular weight between two individual PLL, long PLL (Mw: 30,000-70,000) and short PLL (Mw: 10,000). Our results contribute to the accumulation of information for peptide-detectable nanopores.
Collapse
Affiliation(s)
- Mitsuki Miyagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Kazuaki Hakamada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| |
Collapse
|
14
|
Abstract
DNA computing has attracted attention as a tool for solving mathematical problems due to the potential for massive parallelism with low energy consumption. However, decoding the output information to a human-recognizable signal is generally time-consuming owing to the requirement for multiple steps of biological operations. Here, we describe simple and rapid decoding of the DNA-computed output for a directed Hamiltonian path problem (HPP) using nanopore technology. In this approach, the output DNA duplex undergoes unzipping whilst passing through an α-hemolysin nanopore, with information electrically decoded as the unzipping time of the hybridized strands. As a proof of concept, we demonstrate nanopore decoding of the HPP of a small graph encoded in DNA. Our results show the feasibility of nanopore measurement as a rapid and label-free decoding method for mathematical DNA computation using parallel self-assembly.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| | | |
Collapse
|
15
|
Ding T, Yang J, Pan V, Zhao N, Lu Z, Ke Y, Zhang C. DNA nanotechnology assisted nanopore-based analysis. Nucleic Acids Res 2020; 48:2791-2806. [PMID: 32083656 PMCID: PMC7102975 DOI: 10.1093/nar/gkaa095] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Nanopore technology is a promising label-free detection method. However, challenges exist for its further application in sequencing, clinical diagnostics and ultra-sensitive single molecule detection. The development of DNA nanotechnology nonetheless provides possible solutions to current obstacles hindering nanopore sensing technologies. In this review, we summarize recent relevant research contributing to efforts for developing nanopore methods associated with DNA nanotechnology. For example, DNA carriers can capture specific targets at pre-designed sites and escort them from nanopores at suitable speeds, thereby greatly enhancing capability and resolution for the detection of specific target molecules. In addition, DNA origami structures can be constructed to fulfill various design specifications and one-pot assembly reactions, thus serving as functional nanopores. Moreover, based on DNA strand displacement, nanopores can also be utilized to characterize the outputs of DNA computing and to develop programmable smart diagnostic nanodevices. In summary, DNA assembly-based nanopore research can pave the way for the realization of impactful biological detection and diagnostic platforms via single-biomolecule analysis.
Collapse
Affiliation(s)
- Taoli Ding
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of engineering, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Nan Zhao
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Zuhong Lu
- Department of Biomedical Engineering, College of engineering, Peking University, Beijing 100871, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Cheng Zhang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Matsushita M, Shoji K, Takai N, Kawano R. Biological Nanopore Probe: Probing of Viscous Solutions in a Confined Nanospace. J Phys Chem B 2020; 124:2410-2416. [PMID: 32031807 DOI: 10.1021/acs.jpcb.9b11096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper describes a nanospace probing system constructed with a pore-forming toxin and a hairpin DNA (hpDNA) molecule. The single hpDNA molecule can be inserted and can move in the confined nanospace of the alpha-hemolysin (αHL) pore. The molecular motion of the hpDNA can be determined based on the fluctuation of the blocking current via channel current measurements. Using this system, we investigated the effect of viscosity of the aqueous solution in the macrospace (bulk) and in the confined nanospace with a small molecule (glycerol) and a polymer (PEG600). The molecular motion of the hpDNA in the nanospace differed in glycerol and PEG600 solutions, while the viscosity remained the same in the bulk solution. The fundamental factors for the viscosity in glycerol and PEG600 solutions are hydrogen bonding and the entanglement of polymer chains, respectively. This difference in factors becomes significant in confined nanospaces, and our system allows us to observe its effect. Additionally, we constructed a spatially resolved nanopore probe integrated into a gold nanoneedle. The αHL-hpDNA nanoprobe system was constructed with the nanoneedle and can be used to monitor the nanospace with nanometer spatial resolution.
Collapse
Affiliation(s)
- Masaki Matsushita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| | - Kan Shoji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.,Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Natsumi Takai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
17
|
Li X, Wang B, Lv H, Yin Q, Zhang Q, Wei X. Constraining DNA Sequences With a Triplet-Bases Unpaired. IEEE Trans Nanobioscience 2020; 19:299-307. [PMID: 32031945 DOI: 10.1109/tnb.2020.2971644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA computing, the combination of computer science and molecular biology, is a burgeoning research field that holds promise for many applications. The accuracy of DNA computing is determined by reliable DNA sequences, the quality of which affects the accuracy of hybridization reactions. Evaluating the sequences obtained from the previous combination constraints in NUPACK for simulation experiments, we find that the concentration of the sequences after entering solution was significantly lower than that before entering solution, which should affect the accuracy of DNA hybridization reactions. Therefore, in this study, we propose a new constraint, a triplet-bases unpaired constraint, which can be combined with other constraints to form a new combination constraint. In addition, we combine the Harmony Search algorithm with the Whale Optimization Algorithm (WOA) to present a new algorithm, termed HSWOA, which we used to design DNA sequences that meet the new combination constraint. Finally, compared with previous findings, our result shows that our algorithm not only improves the efficiency of hybridization reactions but also yields a better fitness value.
Collapse
|
18
|
Hiramoto K, Ino K, Nashimoto Y, Ito K, Shiku H. Electric and Electrochemical Microfluidic Devices for Cell Analysis. Front Chem 2019; 7:396. [PMID: 31214576 PMCID: PMC6557978 DOI: 10.3389/fchem.2019.00396] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022] Open
Abstract
Microfluidic devices are widely used for cell analysis, including applications for single-cell analysis, healthcare, environmental monitoring, and organs-on-a-chip that mimic organs in microfluidics. Moreover, to enable high-throughput cell analysis, real-time monitoring, and non-invasive cell assays, electric and electrochemical systems have been incorporated into microfluidic devices. In this mini-review, we summarize recent advances in these systems, with applications from single cells to three-dimensional cultured cells and organs-on-a-chip. First, we summarize microfluidic devices combined with dielectrophoresis, electrophoresis, and electrowetting-on-a-dielectric for cell manipulation. Next, we review electric and electrochemical assays of cells to determine chemical section activity, and oxygen and glucose consumption activity, among other applications. In addition, we discuss recent devices designed for the electric and electrochemical collection of cell components from cells. Finally, we highlight the future directions of research in this field and their application prospects.
Collapse
Affiliation(s)
- Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Ito
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Sekiya Y, Shimizu K, Kitahashi Y, Ohyama A, Kawamura I, Kawano R. Electrophysiological Analysis of Membrane Disruption by Bombinin and Its Isomer Using the Lipid Bilayer System. ACS APPLIED BIO MATERIALS 2019; 2:1542-1548. [DOI: 10.1021/acsabm.8b00835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yusuke Sekiya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keisuke Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuki Kitahashi
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akifumi Ohyama
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
20
|
|