1
|
Bekavac N, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J, Jurinjak Tušek A, Šalić A. Advancements in Aqueous Two-Phase Systems for Enzyme Extraction, Purification, and Biotransformation. Molecules 2024; 29:3776. [PMID: 39202854 PMCID: PMC11357509 DOI: 10.3390/molecules29163776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, the increasing need for energy conservation and environmental protection has driven industries to explore more efficient and sustainable processes. Liquid-liquid extraction (LLE) is a common method used in various sectors for separating components of liquid mixtures. However, the traditional use of toxic solvents poses significant health and environmental risks, prompting the shift toward green solvents. This review deals with the principles, applications, and advantages of aqueous two-phase systems (ATPS) as an alternative to conventional LLE. ATPS, which typically utilize water and nontoxic components, offer significant benefits such as high purity and single-step biomolecule extraction. This paper explores the thermodynamic principles of ATPS, factors influencing enzyme partitioning, and recent advancements in the field. Specific emphasis is placed on the use of ATPS for enzyme extraction, showcasing its potential in improving yields and purity while minimizing environmental impact. The review also highlights the role of ionic liquids and deep eutectic solvents in enhancing the efficiency of ATPS, making them viable for industrial applications. The discussion extends to the challenges of integrating ATPS into biotransformation processes, including enzyme stability and process optimization. Through comprehensive analysis, this paper aims to provide insights into the future prospects of ATPS in sustainable industrial practices and biotechnological applications.
Collapse
Affiliation(s)
- Nikša Bekavac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Baghbanbashi M, Shiran HS, Kakkar A, Pazuki G, Ristroph K. Recent advances in drug delivery applications of aqueous two-phase systems. PNAS NEXUS 2024; 3:pgae255. [PMID: 39006476 PMCID: PMC11245733 DOI: 10.1093/pnasnexus/pgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Aqueous two-phase systems (ATPSs) are liquid-liquid equilibria between two aqueous phases that usually contain over 70% water content each, which results in a nontoxic organic solvent-free environment for biological compounds and biomolecules. ATPSs have attracted significant interest in applications for formulating carriers (microparticles, nanoparticles, hydrogels, and polymersomes) which can be prepared using the spontaneous phase separation of ATPSs as a driving force, and loaded with a wide range of bioactive materials, including small molecule drugs, proteins, and cells, for delivery applications. This review provides a detailed analysis of various ATPSs, including strategies employed for particle formation, polymerization of droplets in ATPSs, phase-guided block copolymer assemblies, and stimulus-responsive carriers. Processes for loading various bioactive payloads are discussed, and applications of these systems for drug delivery are summarized and discussed.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hadi Shaker Shiran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Kurt Ristroph
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Khunnonkwao P, Thitiprasert S, Jaiaue P, Khumrangsee K, Cheirsilp B, Thongchul N. The outlooks and key challenges in renewable biomass feedstock utilization for value-added platform chemical via bioprocesses. Heliyon 2024; 10:e30830. [PMID: 38770303 PMCID: PMC11103475 DOI: 10.1016/j.heliyon.2024.e30830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The conversion of renewable biomass feedstock into value-added products via bioprocessing platforms has become attractive because of environmental and health concerns. Process performance and cost competitiveness are major factors in the bioprocess design to produce desirable products from biomass feedstock. Proper pretreatment allows delignification and hemicellulose removal from the liquid fraction, allowing cellulose to be readily hydrolyzed to monomeric sugars. Several industrial products are produced via sugar fermentation using either naturally isolated or genetically modified microbes. Microbial platforms play an important role in the synthesis of several products, including drop-in chemicals, as-in products, and novel compounds. The key elements in developing a fermentation platform are medium formulation, sterilization, and active cells for inoculation. Downstream bioproduct recovery may seem like a straightforward chemical process, but is more complex, wherein cost competitiveness versus recovery performance becomes a challenge. This review summarizes the prospects for utilizing renewable biomass for bioprocessing.
Collapse
Affiliation(s)
- Panwana Khunnonkwao
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Phetcharat Jaiaue
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Katsaya Khumrangsee
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Sharma V, Mottafegh A, Joo JU, Kang JH, Wang L, Kim DP. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals. LAB ON A CHIP 2024; 24:2861-2882. [PMID: 38751338 DOI: 10.1039/d3lc01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biopharmaceuticals have emerged as powerful therapeutic agents, revolutionizing the treatment landscape for various diseases, including cancer, infectious diseases, autoimmune and genetic disorders. These biotherapeutics pave the way for precision medicine with their unique and targeted capabilities. The production of high-quality biologics entails intricate manufacturing processes, including cell culture, fermentation, purification, and formulation, necessitating specialized facilities and expertise. These complex processes are subject to rigorous regulatory oversight to evaluate the safety, efficacy, and quality of biotherapeutics prior to clinical approval. Consequently, these drugs undergo extensive purification unit operations to achieve high purity by effectively removing impurities and contaminants. The field of personalized precision medicine necessitates the development of novel and highly efficient technologies. Microfluidic technology addresses unmet needs by enabling precise and compact separation, allowing rapid, integrated and continuous purification modules. Moreover, the integration of intelligent biomanufacturing systems with miniaturized devices presents an opportunity to significantly enhance the robustness of complex downstream processing of biopharmaceuticals, with the benefits of automation and advanced control. This allows seamless data exchange, real-time monitoring, and synchronization of purification steps, leading to improved process efficiency, data management, and decision-making. Integrating autonomous systems into biopharmaceutical purification ensures adherence to regulatory standards, such as good manufacturing practice (GMP), positioning the industry to effectively address emerging market demands for personalized precision nano-medicines. This perspective review will emphasize on the significance, challenges, and prospects associated with the adoption of continuous, integrated, and intelligent methodologies in small-scale downstream processing for various types of biologics. By utilizing microfluidic technology and intelligent systems, purification processes can be enhanced for increased efficiency, cost-effectiveness, and regulatory compliance, shaping the future of biopharmaceutical production and enabling the development of personalized and targeted therapies.
Collapse
Affiliation(s)
- Vikas Sharma
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Ji-Ho Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
5
|
Torres-Acosta MA, Olivares-Molina A, Kent R, Leitão N, Gershater M, Parker B, Lye GJ, Dikicioglu D. Practical deployment of automation to expedite aqueous two-phase extraction. J Biotechnol 2024; 387:32-43. [PMID: 38555021 DOI: 10.1016/j.jbiotec.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The feasibility of bioprocess development relies heavily on the successful application of primary recovery and purification techniques. Aqueous two-phase extraction (ATPE) disrupts the definition of "unit operation" by serving as an integrative and intensive technique that combines different objectives such as the removal of biomass and integrated recovery and purification of the product of interest. The relative simplicity of processing large samples renders this technique an attractive alternative for industrial bioprocessing applications. However, process development is hindered by the lack of easily predictable partition behaviours, the elucidation of which necessitates a large number of experiments to be conducted. Liquid handling devices can assist to address this problem; however, they are configured to operate using low viscosity fluids such as water and water-based solutions as opposed to highly viscous polymeric solutions, which are typically required in ATPE. In this work, an automated high throughput ATPE process development framework is presented by constructing phase diagrams and identifying the binodal curves for PEG6000, PEG3000, and PEG2000. Models were built to determine viscosity- and volume-independent transfer parameters. The framework provided an appropriate strategy to develop a very precise and accurate operation by exploiting the relationship between different liquid transfer parameters and process error. Process accuracy, measured by mean absolute error, and device precision, evaluated by the coefficient of variation, were both shown to be affected by the mechanical properties, particularly viscosity, of the fluids employed. For PEG6000, the mean absolute error improved by six-fold (from 4.82% to 0.75%) and the coefficient of variation improved by three-fold (from 0.027 to 0.008) upon optimisation of the liquid transfer parameters accounting for the viscosity effect on the PEG-salt buffer utilising ATPE operations. As demonstrated here, automated liquid handling devices can serve to streamline process development for APTE enabling wide adoption of this technique in large scale bioprocess applications.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom; Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, N.L. 64849, México
| | - Alex Olivares-Molina
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ross Kent
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Nuno Leitão
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Markus Gershater
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Brenda Parker
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Gary J Lye
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Duygu Dikicioglu
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
6
|
Ebrahimi A, Andishmand H, Huo C, Amjadi S, Khezri S, Hamishehkar H, Mahmoudzadeh M, Kim KH. Glycomacropeptide: A comprehensive understanding of its major biological characteristics and purification methodologies. Compr Rev Food Sci Food Saf 2024; 23:e13370. [PMID: 38783570 DOI: 10.1111/1541-4337.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Glycomacropeptide (GMP) is a bioactive peptide derived from whey protein, consisting of 64 amino acids. It is a phenylalanine-free peptide, making it a beneficial dietary option for individuals dealing with phenylketonuria (PKU). PKU is an inherited metabolic disorder characterized by high levels of phenylalanine in the bloodstream, resulting from a deficiency of phenylalanine dehydrogenase in affected individuals. Consequently, patients with PKU require lifelong adherence to a low-phenylalanine diet, wherein a significant portion of their protein intake is typically sourced from a phenylalanine-free amino acid formula. GMP has several nutritional values, numerous bioactivity properties, and therapeutic effects in various inflammatory disorders. Despite all these features, the purification of GMP is an imperative requirement; however, there are no unique methods for achieving this goal. Traditionally, several methods have been used for GMP purification, such as thermal or acid treatment, alcoholic precipitation, ultrafiltration (UF), gel filtration, and membrane separation techniques. However, these methods have poor specificity, and the presence of large amounts of impurities can interfere with the analysis of GMP. More efficient and highly specific GMP purification methods need to be developed. In this review, we have highlighted and summarized the current research progress on the major biological features and purification methodologies associated with GMP, as well as providing an extensive overview of the recent developments in using charged UF membranes for GMP purification and the influential factors.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sima Khezri
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System. Processes (Basel) 2023. [DOI: 10.3390/pr11020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extraction of xylanase was performed using an aqueous two-phase system (ATPS) based on polyethylene glycol (PEG1540) and various salts. Preliminary studies in a batch extractor showed that the highest extraction efficiency, E = 79.63 ± 5.21%, and purification factor, PF = 1.26 ± 0.25, were obtained with sodium citrate dihydrate-H2O-PEG1540-based ATPS for an extraction time of 10 min. The process was optimized using the experimental Box-Behnken design at three levels with three factors: extraction time (t), xylanase concentration (γ), and mass fraction of PEG in the ATPS (wPEG). Under optimal process conditions (γ = 0.3 mg/mL, wPEG = 0.21 w/w, and t = 15 min), E = 99.13 ± 1.20% and PF = 6.49 ± 0.05 were achieved. In order to intensify the process, the extraction was performed continuously in microextractors at optimal process conditions. The influence of residence time, different feeding strategies, and channel diameter on extraction efficiency and purification factor was further examined. Similar results were obtained in the microextractor for a residence time of τ = 1.03 min (E = 99.59 ± 1.22% and PF = 6.61 ± 0.07) as in the experiment carried out under optimal conditions in the batch extractor. In addition, a batch extractor and a continuous microextractor were used for the extraction of raw xylanase produced by Thermomyces lanuginosus on solid supports.
Collapse
|
8
|
Tang Y, Zhang Y, Chen X, Xie X, Zhou N, Dai Z, Xiong Y. Up/Down Tuning of Poly(ionic liquid)s in Aqueous Two-Phase Systems. Angew Chem Int Ed Engl 2023; 62:e202215722. [PMID: 36456527 DOI: 10.1002/anie.202215722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.
Collapse
Affiliation(s)
- Yuntao Tang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yige Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xi Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xiaowen Xie
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ning Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
9
|
Tang M, Yi X, Huang H, Feng Y, Chen G, Mu X. Organic-NaH2PO4-H2O aqueous biphasic system for extraction of paeonol from cortex moutan: solvent selection and mechanism probing. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Marchel M, Marrucho IM. Application of Aqueous Biphasic Systems Extraction in Various Biomolecules Separation and Purification: Advancements Brought by Quaternary Systems. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2136574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel M. Marrucho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Wang H, Zhao J, Li Y, Cao Y, Zhu Z, Wang M, Zhang R, Pan F, Jiang Z. Aqueous Two-Phase Interfacial Assembly of COF Membranes for Water Desalination. NANO-MICRO LETTERS 2022; 14:216. [PMID: 36352333 PMCID: PMC9646690 DOI: 10.1007/s40820-022-00968-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 05/15/2023]
Abstract
Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region, affording unique confined space for membrane assembly. Here, for the first time, an aqueous two-phase interfacial assembly method is proposed to fabricate covalent organic framework (COF) membranes. The aqueous solution containing polyethylene glycol and dextran undergoes segregated phase separation into two water-rich phases. By respectively distributing aldehyde and amine monomers into two aqueous phases, a series of COF membranes are fabricated at water-water interface. The resultant membranes exhibit high NaCl rejection of 93.0-93.6% and water permeance reaching 1.7-3.7 L m-2 h-1 bar-1, superior to most water desalination membranes. Interestingly, the interfacial tension is found to have pronounced effect on membrane structures. The appropriate interfacial tension range (0.1-1.0 mN m-1) leads to the tight and intact COF membranes. Furthermore, the method is extended to the fabrication of other COF and metal-organic polymer membranes. This work is the first exploitation of fabricating membranes in all-aqueous system, confering a green and generic method for advanced membrane manufacturing.
Collapse
Affiliation(s)
- Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Jiashuai Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Yang Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Ziting Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, People's Republic of China.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, People's Republic of China.
| |
Collapse
|
12
|
Artificial neural network modeling on the polymer-electrolyte aqueous two-phase systems involving biomolecules. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
14
|
Huang H, Mu X, Deng J, Xiao S, Luo Z, Chen G. Solvation Free Energy for Selection of an Aqueous Two-Phase System: Case in Paeonol Extraction from Cortex Moutan. ACS OMEGA 2022; 7:30920-30929. [PMID: 36092572 PMCID: PMC9453803 DOI: 10.1021/acsomega.2c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Aqueous two-phase system(s) (ATPS) has/have been widely employed in the extraction and separation of bioactive molecules from herbs due to its various advantages such as high efficiency and good selectivity. For selecting the type and amount of organics and salts in ATPS, onerous experimental trials are required to ensure the reliability. We intended to develop a theoretical method to select ATPS in the case of paeonol extraction from cortex moutan. The solvation free energies (E solv) of paeonol in the top phase of 54 ATPS (ATPS-acetone, ATPS-acetone-EA, ATPS-THF, ATPS-THF-EA, ATPS-EtOH, and ATPS-EtOH-EA) were calculated with Gaussian 09, and the extraction yields with 54 ATPS were determined. By comparison of E solv and yield, the E solv rank was effective to select the optimal organic type and organic solvent fraction and aqueous salt concentration. With each series of 18 ATPS (ATPS-acetone plus ATPS-acetone-EA; ATPS-THF plus ATPS-THF-EA; or ATPS-EtOH plus ATPS-EtOH-EA), the paeonol yield was correlated with E solv, suggesting that the optimal organic type and fraction and the aqueous NaH2PO4 concentration could be selected by using theoretical E solv, or at least, the theoretical E solv rank could offer effective guidance for experimental design, and thus, tedious and onerous experimental work for optimization in ATPS extraction can be significantly reduced.
Collapse
|
15
|
Sarkarat R, Mohamadnia S, Tavakoli O. Recent advances in non-conventional techniques for extraction of phycobiliproteins and carotenoids from microalgae. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Martini G, Nerli BB, Malpiedi LP. A novel method based on saponification coupled to micelle-extraction for recovering valuable bioactive compounds from soybean oil deodorizer distillate. Food Chem 2022; 384:132610. [DOI: 10.1016/j.foodchem.2022.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
|
17
|
Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041363. [PMID: 35209151 PMCID: PMC8877132 DOI: 10.3390/molecules27041363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
Conventional extraction methods of proanthocyanidins (PAC) are based on toxic organic solvents, which can raise concerns about the use of extracts in supplemented food and nutraceuticals. Thus, a PAC extraction method was developed for grape seeds (GS) and grape seed powder using food-grade ethanol by optimizing the extraction conditions to generate the maximum yield of PAC. Extraction parameters, % ethanol, solvent: solid (s:s) ratio, sonication time, and temperature were optimized by the central composite design of the response surface method. The yields of PAC under different extraction conditions were quantified by the methylcellulose precipitable tannin assay. The final optimum conditions were 47% ethanol, 10:1 s:s ratio (v:w), 53 min sonication time, and 60 °C extraction temperature. High-performance liquid chromatography analysis revealed the presence of catechin, procyanidin B2, oligomeric and polymeric PAC in the grape seed-proanthocyanidin extracts (GS-PAC). GS-PAC significantly reduced reactive oxygen species and lipid accumulation in the palmitic-acid-induced mouse hepatocytes (AML12) model of steatosis. About 50% of the PAC of the GS was found to be retained in the by-product of wine fermentation. Therefore, the developed ethanol-based extraction method is suitable to produce PAC-rich functional ingredients from grape by-products to be used in supplemented food and nutraceuticals.
Collapse
|
18
|
Xiao X, Qiao Y, Xu Z, Wu T, Wu Y, Ling Z, Yan Y, Huang J. Enzyme-Responsive Aqueous Two-Phase Systems in a Cationic-Anionic Surfactant Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13125-13131. [PMID: 34714092 DOI: 10.1021/acs.langmuir.1c02303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme-instructed self-assembly is an increasingly attractive topic owing to its broad applications in biomaterials and biomedicine. In this work, we report an approach to construct enzyme-responsive aqueous surfactant two-phase (ASTP) systems serving as enzyme substrates by using a cationic surfactant (myristoylcholine chloride) and a series of anionic surfactants. Driven by the hydrophobic interaction and electrostatic attraction, self-assemblies of cationic-anionic surfactant mixtures result in biphasic systems containing condensed lamellar structures and coexisting dilute solutions, which turn into homogeneous aqueous phases in the presence of hydrolase (cholinesterase). The enzyme-sensitive ASTP systems reported in this work highlight potential applications in the active control of biomolecular enrichment/release and visual detection of cholinesterase.
Collapse
Affiliation(s)
- Xiao Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhirui Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yunxue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
19
|
Extractive Fermentation for Recovery of Bacteriocin-Like Inhibitory Substances Derived from Lactococcus lactis Gh1 Using PEG2000/Dextran T500 Aqueous Two-Phase System. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work aimed to optimize the parameters affecting partitioning of a bacteriocin-like inhibitory substances (BLIS) from Lactococcus lactis Gh1 in extractive fermentation using polyethylene glycol (PEG)/dextran aqueous two-phase system (ATPS). This system was developed for the simultaneous cell cultivation and downstream processing of BLIS. Results showed that the molecular weight of PEG, PEG concentration, and dextran T500 affect the partition coefficient (K), purification factor (PF), and yield of BLIS partitioning. ATPS composed of 10% (w/w) PEG2000 and 8% (w/w) dextran T500, provided the greatest conditions for the extractive BLIS production. The K (1.00 ± 0.16), PF (2.92 ± 0.37) and yield (77.24 ± 2.81%) were increased at selected orbital speed (200 rpm) and pH (pH 7). Sustainable growth of the cells in the bioreactor and repeated fermentation up to the eighth extractive batch were observed during the scale up process, ensuring a continuous production and purification of BLIS. Hence, the simplicity and effectiveness of ATPS in the purification of BLIS were proven in this study.
Collapse
|
20
|
Campos-García VR, Benavides J, González-Valdez J. Reactive aqueous two-phase systems for the production and purification of PEGylated proteins. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Initial Screening of Poly(ethylene glycol) Amino Ligands for Affinity Purification of Plasmid DNA in Aqueous Two-Phase Systems. Life (Basel) 2021; 11:life11111138. [PMID: 34833014 PMCID: PMC8619368 DOI: 10.3390/life11111138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy and DNA vaccination are among the most expected biotechnological and medical advances for the coming years. However, the lack of cost-effective large-scale production and purification of pharmaceutical-grade plasmid DNA (pDNA) still hampers their wide application. Downstream processing, which is mainly chromatography-based, of pDNA remains the key manufacturing step. Despite its high resolution, the scaling-up of chromatography is usually difficult and presents low capacity, resulting in low yields. Alternative methods that are based on aqueous two-phase systems (ATPSs) have been studied. Although higher yields may be obtained, its selectivity is often low. In this work, modified polymers based on poly(ethylene glycol) (PEG) derivatisation with amino groups (PEG–amine) or conjugation with positively charged amino acids (PEG–lysine, PEG–arginine, and PEG–histidine) were studied to increase the selectivity of PEG–dextran systems towards the partition of a model plasmid. A two-step strategy was employed to obtain suitable pure formulations of pDNA. In the first step, a PEG–dextran system with the addition of the affinity ligand was used with the recovery of the pDNA in the PEG-rich phase. Then, the pDNA was re-extracted to an ammonium-sulphate-rich phase in the second step. After removing the salt, this method yielded a purified preparation of pDNA without RNA and protein contamination.
Collapse
|
22
|
A Doubly Green Separation Process: Merging Aqueous Two-Phase Extraction and Supercritical Fluid Extraction. Processes (Basel) 2021. [DOI: 10.3390/pr9040727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aqueous two-phase extraction (ATPE) is a green separation technique which uses mixtures of water and environmentally benign polymers such as polyethylene glycol (PEG) as solvents. One of the challenges in implementing this extraction on an industrial scale is finding a suitable method for the isolation of target compounds from water-polymer solutions after the extraction, without diminishing ecological benefits of the method. In this paper, we propose using another green separation technique, supercritical fluid extraction (SFE), for the back-extraction of low molecular weight medium polarity compounds from ATPE solutions. Experiments with two model compounds, caffeine and benzoic acid, showed principal applicability of SFE for this task. Pressure (100–300 bar) and temperature (35–75 °C) of supercritical carbon dioxide play a major role in defining extraction capability. Extraction ratios of 35% for caffeine and 42% for benzoic acid were obtained at high fluid pressure and moderate temperature at 1:6 volume phase ratio. That gives an estimation of 10–20 theoretical steps required for complete exhaustive extraction from the ATPE solution, which is readily achievable in standard counter-current column SFE. Combining these two green methods together not only serves as an environmentally friendly method for the isolation of valuable low molecular weight compounds from diluted water solutions, but also allows for simple, energy effective recuperation of ATPE solvents.
Collapse
|
23
|
Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
|
25
|
Taddia A, Rito-Palomares M, Mayolo-Deloisa K, Tubio G. Purification of xylanase from Aspergillus niger NRRL3 extract by an integrated strategy based on aqueous two-phase systems followed by ion exchange chromatography. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Economic analysis of the production and recovery of green fluorescent protein using ATPS-based bioprocesses. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Beschkov V, Yankov D. Chemical engineering methods in downstream processing in biotechnology. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Downstream processing in industrial biotechnology is a very important part of the overall bioproduct manufacturing. Sometimes the cost for this part of biotechnologies is up to 50% of the overall expenses. It comprises product concentration, separation and purification to different extents, as requested. The usually low product concentrations, the large volumes of fermentation broth and the product sensitivity toward higher temperatures lead to specific methods, similar but not identical to the ones in traditional chemical technology.
This article summarizes briefly the unit operations in downstream processing in industrial biotechnology, making a parallel between biotechnology and chemical technology.
Collapse
Affiliation(s)
- V. Beschkov
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Acad.G.Bonchev St., Block 103 , Sofia , 1113 Bulgaria
| | - D. Yankov
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Acad.G.Bonchev St., Block 103 , Sofia , 1113 Bulgaria
| |
Collapse
|
28
|
Alencar L, Passos L, Martins M, Barreto I, Soares C, Lima A, Souza R. Complete process for the selective recovery of textile dyes using aqueous two-phase system. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Dumas F, Roger E, Rodriguez J, Benyahia L, Benoit JP. Aqueous Two-Phase Systems: simple one-step process formulation and phase diagram for characterisation. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Int J Biol Macromol 2020; 167:1527-1543. [PMID: 33212102 DOI: 10.1016/j.ijbiomac.2020.11.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 12/28/2022]
Abstract
A successful drug delivery to a specific site relies on two essential factors including; efficient entrapment of the drug within the carrier and successful delivery of drug- loaded nanocarrier to the target site without opsonisation or drug release in the circulation before reaching the organ of interest. Lactoferrin (LF) is a glycoprotein belonging to the transferrin (TF) family which can bind to TF receptors (TFRs) and LF membrane internalization receptors (LFRs) highly expressed on the cell surface of both highly proliferating cancer cells and blood brain barrier (BBB), which in turn can facilitate its accessibility to the cell nucleus. This merit could be exploited to develop actively targeted drug delivery systems that can easily cross the BBB or internalize into tumor cells. In this review, the most recent advances of utilizing LF as an active targeting ligand for different types of nanocarriers including: inorganic nanoparticles, dendrimers, synthetic biodegradable polymers, lipid nanocarriers, natural polymers, and nanoemulstions will be highlighted. Collectively, LF seems to be a promising targeting ligand in the field of nanomedicine.
Collapse
|
31
|
Assis RC, Mageste AB, de Lemos LR, Orlando RM, Rodrigues GD. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants from aqueous matrices. Talanta 2020; 223:121697. [PMID: 33303149 DOI: 10.1016/j.talanta.2020.121697] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022]
Abstract
This review approaches how aqueous two-phase systems (ATPS), in their various compositions (e.g., polymer + salt, copolymer + salt, ionic liquid + salt, acetonitrile + salt), can be efficiently used for extraction, preconcentration, and clean-up of analytes in aqueous samples to determine the compounds classified as emerging contaminants (ECs). In the literature, there are some studies using ATPS applied to ECs, like pesticides, pharmaceuticals, illicit drugs, personal care products, alkaloids, and hormones, even when in trace concentrations. The ATPS is an alternative to the conventional liquid-liquid extraction technique. However, it is predominantly composed of water and do not generally use organic solvents and, therefore, is based on the principles of green chemistry. An ATPS approach has a unique advantage because it can extract neutral, anionic, cationic, polar, and nonpolar compounds, even when present simultaneously in the same sample. This review covers how this simple and low environmental impact technique has been employed for the analysis of different classes of emerging contaminants.
Collapse
Affiliation(s)
- Roberta C Assis
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil
| | - Aparecida B Mageste
- Universidade Federal de Ouro Preto, DQUI/ICEB, Ouro Preto, MG, 35.450-000, Brazil
| | - Leandro R de Lemos
- Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, DEQUI, Diamantina, MG, 39.100-000, Brazil
| | - Ricardo M Orlando
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil
| | - Guilherme D Rodrigues
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil.
| |
Collapse
|
32
|
González-Amado M, Rodríguez O, Soto A, Carbonell-Hermida P, Olaya MDM, Marcilla A. Aqueous Two-Phase Systems: A Correlation Analysis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marlén González-Amado
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Oscar Rodríguez
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Ana Soto
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | | | - María del Mar Olaya
- Department of Chemical Engineering, University of Alicante, Apdo. 99, 03080 Alicante, Spain
- Institute of Chemical Process Engineering, University of Alicante, 03080, Alicante, Spain
| | - Antonio Marcilla
- Department of Chemical Engineering, University of Alicante, Apdo. 99, 03080 Alicante, Spain
- Institute of Chemical Process Engineering, University of Alicante, 03080, Alicante, Spain
| |
Collapse
|
33
|
Han J, Cai Y, Wang L, Mao Y, Ni L, Wang Y. A high efficiency method combining metal chelate ionic liquid-based aqueous two-phase flotation with two-step precipitation process for bromelain purification. Food Chem 2020; 309:125749. [DOI: 10.1016/j.foodchem.2019.125749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023]
|
34
|
Abstract
A well-known bioseparation technique namely liquid biphasic system (LBS) has attracted many researchers’ interest for being an alternative bioseparation technology for various kinds of biomolecules. The present review begins with an in-depth discussion on the fundamental principle of LBS and this is followed by the discussion on further development of various phase-forming components in LBS. Additionally, the implementation of various advance technologies to the LBS that is beneficial towards the efficiency of LBS for the extraction, separation, and purification of biomolecules was discussed. The key parameters affecting the LBS were presented and evaluated. Moreover, future prospect and challenges were highlighted to be a useful guide for future development of LBS. The efforts presented in this review will provide an insight for future researches in liquid-liquid separation techniques.
Collapse
|
35
|
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20:451-465. [PMID: 31773998 DOI: 10.1080/14712598.2020.1693541] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ricardo J S Silva
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Cristina Peixoto
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| |
Collapse
|
36
|
Ran L, Yang C, Xu M, Yi Z, Ren D, Yi L. Enhanced aqueous two-phase extraction of proanthocyanidins from grape seeds by using ionic liquids as adjuvants. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
|
38
|
Yang O, Qadan M, Ierapetritou M. Economic Analysis of Batch and Continuous Biopharmaceutical Antibody Production: A Review. J Pharm Innov 2019; 14:1-19. [PMID: 30923586 PMCID: PMC6432653 DOI: 10.1007/s12247-018-09370-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE There is a growing interest in continuous biopharmaceutical processing due to the advantages of small footprint, increased productivity, consistent product quality, high process flexibility and robustness, facility cost-effectiveness, and reduced capital and operating cost. To support the decision making of biopharmaceutical manufacturing, comparisons between conventional batch and continuous processing are provided. METHODS Various process unit operations in different operating modes are summarized. Software implementation, as well as computational methods used, are analyzed pointing to the advantages and disadvantages that have been highlighted in the literature. Economic analysis methods and their applications in different parts of the processes are also discussed with examples from publications in the last decade. RESULTS The results of the comparison between batch and continuous process operation alternatives are discussed. Possible improvements in process design and analysis are recommended. The methods used here do not reflect Lilly's cost structures or economic evaluation methods. CONCLUSION This paper provides a review of the work that has been published in the literature on computational process design and economic analysis methods on continuous biopharmaceutical antibody production and its comparison with a conventional batch process.
Collapse
Affiliation(s)
- Ou Yang
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Maen Qadan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| |
Collapse
|
39
|
Zhu J, Göbel U. Metabolic Engineering, Synthetic Biology, Biomedicine, Nanomaterials in Biotechnology Journal. Biotechnol J 2019; 14:e1800702. [DOI: 10.1002/biot.201800702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|