1
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Glinšek K, Bozovičar K, Bratkovič T. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering. Int J Mol Sci 2023; 24:ijms24098144. [PMID: 37175850 PMCID: PMC10179654 DOI: 10.3390/ijms24098144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The Chinese hamster ovary (CHO) cell line is a well-established platform for the production of biopharmaceuticals due to its ability to express complex therapeutic proteins with human-like glycopatterns in high amounts. The advent of CRISPR technology has opened up new avenues for the engineering of CHO cell lines for improved protein production and enhanced product quality. This review summarizes recent advances in the application of CRISPR technology for CHO cell line engineering with a particular focus on glycosylation modulation, productivity enhancement, tackling adventitious agents, elimination of problematic host cell proteins, development of antibiotic-free selection systems, site-specific transgene integration, and CRISPR-mediated gene activation and repression. The review highlights the potential of CRISPR technology in CHO cell line genome editing and epigenetic engineering for the more efficient and cost-effective development of biopharmaceuticals while ensuring the safety and quality of the final product.
Collapse
Affiliation(s)
- Katja Glinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Krištof Bozovičar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Kalkan AK, Palaz F, Sofija S, Elmousa N, Ledezma Y, Cachat E, Rios-Solis L. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv 2023; 64:108115. [PMID: 36758652 DOI: 10.1016/j.biotechadv.2023.108115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Chinese hamster ovary (CHO) cells are among the most widely used mammalian cell lines in the biopharmaceutical industry. Therefore, it is not surprising that significant efforts have been made around the engineering of CHO cells using genetic engineering methods such as the CRISPR-Cas system. In this review, we summarize key recent studies that have used different CRISPR-Cas systems such as Cas9, Cas13 or dCas9 fused with effector domains to improve recombinant protein (r-protein) production in CHO cells. Here, every relevant stage of production was considered, underscoring the advantages and limitations of these systems, as well as discussing their bottlenecks and probable solutions. A special emphasis was given on how these systems could disrupt and/or regulate genes related to glycan composition, which has relevant effects over r-protein properties and in vivo activity. Furthermore, the related promising future applications of CRISPR to achieve a tunable, reversible, or highly stable editing of CHO cells are discussed. Overall, the studies covered in this review show that despite the complexity of mammalian cells, the synthetic biology community has developed many mature strategies to improve r-protein production using CHO cells. In this regard, CRISPR-Cas technology clearly provides efficient and flexible genetic manipulation and allows for the generation of more productive CHO cell lines, leading to more cost-efficient production of biopharmaceuticals, however, there is still a need for many emerging techniques in CRISPR to be reported in CHO cells; therefore, more research in these cells is needed to realize the full potential of this technology.
Collapse
Affiliation(s)
- Ali Kerem Kalkan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Environmental Engineering Department, Gebze Technical University, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Semeniuk Sofija
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nada Elmousa
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Yuri Ledezma
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; Biology Department, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Bolivia
| | - Elise Cachat
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Leonardo Rios-Solis
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
4
|
Amiri S, Adibzadeh S, Ghanbari S, Rahmani B, Kheirandish MH, Farokhi-Fard A, Dastjerdeh MS, Davami F. CRISPR-interceded CHO cell line development approaches. Biotechnol Bioeng 2023; 120:865-902. [PMID: 36597180 DOI: 10.1002/bit.28329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
For industrial production of recombinant protein biopharmaceuticals, Chinese hamster ovary (CHO) cells represent the most widely adopted host cell system, owing to their capacity to produce high-quality biologics with human-like posttranslational modifications. As opposed to random integration, targeted genome editing in genomic safe harbor sites has offered CHO cell line engineering a new perspective, ensuring production consistency in long-term culture and high biotherapeutic expression levels. Corresponding the remarkable advancements in knowledge of CRISPR-Cas systems, the use of CRISPR-Cas technology along with the donor design strategies has been pushed into increasing novel scenarios in cell line engineering, allowing scientists to modify mammalian genomes such as CHO cell line quickly, readily, and efficiently. Depending on the strategies and production requirements, the gene of interest can also be incorporated at single or multiple loci. This review will give a gist of all the most fundamental recent advancements in CHO cell line development, such as different cell line engineering approaches along with donor design strategies for targeted integration of the desired construct into genomic hot spots, which could ultimately lead to the fast-track product development process with consistent, improved product yield and quality.
Collapse
Affiliation(s)
- Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Setare Adibzadeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Ghanbari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnaz Rahmani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad H Kheirandish
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Farokhi-Fard
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansoureh S Dastjerdeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Carver J, Kern M, Ko P, Greenwood-Goodwin M, Yu XC, Duan D, Tang D, Misaghi S, Auslaender S, Haley B, Yuk IH, Shen A. A ribonucleoprotein-based decaplex CRISPR/Cas9 knockout strategy for CHO host engineering. Biotechnol Prog 2022; 38:e3212. [PMID: 34538022 DOI: 10.1002/btpr.3212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Chinese hamster ovary (CHO) cell engineering based on CRISPR/Cas9 knockout (KO) technology requires the delivery of guide RNA (gRNA) and Cas9 enzyme for efficient gene targeting. With an ever-increasing list of promising gene targets, developing, and optimizing a multiplex gene KO protocol is crucial for rapid CHO cell engineering. Here, we describe a method that can support efficient targeting and KO of up to 10 genes through sequential transfections. This method utilizes Cas9 protein to first screen multiple synthetic gRNAs per gene, followed by Sanger sequencing indel analysis, to identify effective gRNA sequences. Using sequential transfections of these potent gRNAs led to the isolation of single cell clones with the targeted deletion of all 10 genes (as confirmed by Sanger sequencing at the DNA level and mass spectrometry at the protein level). Screening 704 single cell clones yielded 6 clones in which all 10 genes were deleted through sequential transfections, demonstrating the success of this decaplex gene editing strategy. This pragmatic approach substantially reduces the time and effort required to generate multiple gene knockouts in CHO cells.
Collapse
Affiliation(s)
- Joseph Carver
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Marie Kern
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Peggy Ko
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | | | - X Christopher Yu
- Analytical Development Quality Control, Genentech, Inc., South San Francisco, California, USA
| | - Dana Duan
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Danming Tang
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ben Haley
- Research Biology, Genentech, Inc., South San Francisco, California, USA
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
6
|
Karottki KJLC, Hefzi H, Li S, Pedersen LE, Spahn PN, Joshi C, Ruckerbauer D, Bort JAH, Thomas A, Lee JS, Borth N, Lee GM, Kildegaard HF, Lewis NE. A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes. Metab Eng 2021; 66:114-122. [PMID: 33813034 DOI: 10.1016/j.ymben.2021.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
Media and feed optimization have fueled many-fold improvements in mammalian biopharmaceutical production, but genome editing offers an emerging avenue for further enhancing cell metabolism and bioproduction. However, the complexity of metabolism, involving thousands of genes, makes it unclear which engineering strategies will result in desired traits. Here we present a comprehensive pooled CRISPR screen for CHO cell metabolism, including ~16,000 gRNAs against ~2500 metabolic enzymes and regulators. Using this screen, we identified a glutamine response network in CHO cells. Glutamine is particularly important since it is often over-fed to drive increased TCA cycle flux, but toxic ammonia may accumulate. With the screen we found one orphan glutamine-responsive gene with no clear connection to our network. Knockout of this novel and poorly characterized lipase, Abhd11, substantially increased growth in glutamine-free media by altering the regulation of the TCA cycle. Thus, the screen provides an invaluable targeted platform to comprehensively study genes involved in any metabolic trait, and elucidate novel regulators of metabolism.
Collapse
Affiliation(s)
| | - Hooman Hefzi
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA; Department of Bioengineering, University of California, San Diego, USA
| | - Songyuan Li
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Philipp N Spahn
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA
| | - Chintan Joshi
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA
| | - David Ruckerbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Alex Thomas
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gyun Min Lee
- Department of Biological Sciences, Kaist, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
| | | | - Nathan E Lewis
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA; Department of Bioengineering, University of California, San Diego, USA; National Biologics Facility, Technical University of Denmark, Denmark.
| |
Collapse
|