1
|
Fohler L, Leibetseder L, Cserjan-Puschmann M, Striedner G. Manufacturing of the highly active thermophile PETases PHL7 and PHL7mut3 using Escherichia coli. Microb Cell Fact 2024; 23:272. [PMID: 39390547 PMCID: PMC11465579 DOI: 10.1186/s12934-024-02551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The global plastic waste crisis requires combined recycling strategies. One approach, enzymatic degradation of PET waste into monomers, followed by re-polymerization, offers a circular economy solution. However, challenges remain in producing sufficient amounts of highly active PET-degrading enzymes without costly downstream processes. RESULTS Using the growth-decoupled enGenes eX-press V2 E. coli strain, pH, induction strength and feed rate were varied in a factorial-based optimization approach, to find the best-suited production conditions for the PHL7 enzyme. This led to a 40% increase in activity of the fermentation supernatant. Optimization of the expression construct resulted in a further 4-fold activity gain. Finally, the identified improvements were applied to the production of the more active and temperature stable enzyme variant, PHL7mut3. The unpurified fermentation supernatant of the PHL7mut3 fermentation was able to completely degrade our PET film sample after 16 h of incubation at 70 °C at an enzyme loading of only 0.32 mg enzyme per g of PET. CONCLUSIONS In this research, we present an optimized process for the extracellular production of thermophile and highly active PETases PHL7 and PHL7mut3, eliminating the need for costly purification steps. These advancements support large-scale enzymatic recycling, contributing to solving the global plastic waste crisis.
Collapse
Affiliation(s)
- Lisa Fohler
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Lukas Leibetseder
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Monika Cserjan-Puschmann
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Gerald Striedner
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria.
| |
Collapse
|
2
|
Matinja AI, Kamarudin NHA, Leow ATC, Oslan SN, Ali MSM. Cold-Active Lipases and Esterases: A Review on Recombinant Overexpression and Other Essential Issues. Int J Mol Sci 2022; 23:ijms232315394. [PMID: 36499718 PMCID: PMC9740821 DOI: 10.3390/ijms232315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cold environments characterised by diverse temperatures close to or below the water freezing point dominate about 80% of the Earth's biosphere. One of the survival strategies adopted by microorganisms living in cold environments is their expression of cold-active enzymes that enable them to perform an efficient metabolic flux at low temperatures necessary to thrive and reproduce under those constraints. Cold-active enzymes are ideal biocatalysts that can reduce the need for heating procedures and improve industrial processes' quality, sustainability, and cost-effectiveness. Despite their wide applications, their industrial usage is still limited, and the major contributing factor is the lack of complete understanding of their structure and cold adaptation mechanisms. The current review looked at the recombinant overexpression, purification, and recent mechanism of cold adaptation, various approaches for purification, and three-dimensional (3D) crystal structure elucidation of cold-active lipases and esterase.
Collapse
Affiliation(s)
- Adamu Idris Matinja
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Science, Bauchi State University, Gadau 751105, Nigeria
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
3
|
Mahalik S, Sharma A, Das DR, Mittra D, Mukherjee KJ. Co-expressing Leucine Responsive Regulatory protein (Lrp) enhances Recombinant L-Asparaginase-II production in Escherichia coli. J Biotechnol 2022; 351:99-108. [DOI: 10.1016/j.jbiotec.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
4
|
Zanker AA, Stargardt P, Kurzbach SC, Turrina C, Mairhofer J, Schwaminger SP, Berensmeier S. Direct capture and selective elution of a secreted polyglutamate-tagged nanobody using bare magnetic nanoparticles. Biotechnol J 2022; 17:e2100577. [PMID: 35085417 DOI: 10.1002/biot.202100577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The secretion and direct capture of proteins from the extracellular medium is a promising approach for purification, thus enabling integrated bioprocesses. MAJOR RESULTS We demonstrate the secretion of a nanobody (VHH) to the extracellular medium (EM) and its direct capture by bare, non-functionalized magnetic nanoparticles (MNPs). An ompA signal peptide for periplasmic localization, a polyglutamate-tag (E8 ) for selective MNP binding, and a factor Xa protease cleavage site were fused N-terminally to the nanobody. The extracellular production of the E8 -VHH (36 mg L-1 ) was enabled using a growth-decoupled Escherichia coli-based expression system. The direct binding of E8 -VHH to the bare magnetic nanoparticles was possible and could be drastically improved up to a yield of 88% by adding polyethylene glycol (PEG). The selectivity of the polyglutamate-tag enabled a selective elution of the E8 -VHH from the bare MNPs while raising the concentration factor (5x) and purification factor (4x) significantly. CONCLUSION Our studies clearly show that the unique combination of a growth-decoupled E. coli secretion system, the polyglutamate affinity tag, non-functionalized magnetic nanoparticles, and affinity magnetic precipitation is an innovative and novel way to capture and concentrate nanobodies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexander A Zanker
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | | | - Sophie C Kurzbach
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Chiara Turrina
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | | | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| |
Collapse
|
5
|
Monitoring E. coli Cell Integrity by ATR-FTIR Spectroscopy and Chemometrics: Opportunities and Caveats. Processes (Basel) 2021. [DOI: 10.3390/pr9030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During recombinant protein production with E. coli, the integrity of the inner and outer membrane changes, which leads to product leakage (loss of outer membrane integrity) or lysis (loss of inner membrane integrity). Motivated by current Quality by Design guidelines, there is a need for monitoring tools to determine leakiness and lysis in real-time. In this work, we assessed a novel approach to monitoring E. coli cell integrity by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Various preprocessing strategies were tested in combination with regression (partial least squares, random forest) or classification models (partial least squares discriminant analysis, linear discriminant analysis, random forest, artificial neural network). Models were validated using standard procedures, and well-performing methods were additionally scrutinized by removing putatively important features and assessing the decrease in performance. Whereas the prediction of target compound concentration via regression was unsuccessful, possibly due to a lack of samples and low sensitivity, random forest classifiers achieved prediction accuracies of over 90% within the datasets tested in this study. However, strong correlations with untargeted spectral regions were revealed by feature selection, thereby demonstrating the need to rigorously validate chemometric models for bioprocesses, including the evaluation of feature importance.
Collapse
|
6
|
Schottroff F, Kastenhofer J, Spadiut O, Jaeger H, Wurm DJ. Selective Release of Recombinant Periplasmic Protein From E. coli Using Continuous Pulsed Electric Field Treatment. Front Bioeng Biotechnol 2021; 8:586833. [PMID: 33634078 PMCID: PMC7900513 DOI: 10.3389/fbioe.2020.586833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
To date, high-pressure homogenization is the standard method for cell disintegration before the extraction of cytosolic and periplasmic protein from E. coli. Its main drawback, however, is low selectivity and a resulting high load of host cell impurities. Pulsed electric field (PEF) treatment may be used for selective permeabilization of the outer membrane. PEF is a process which is able to generate pores within cell membranes, the so-called electroporation. It can be readily applied to the culture broth in continuous mode, no additional chemicals are needed, heat generation is relatively low, and it is already implemented at industrial scale in the food sector. Yet, studies about PEF-assisted extraction of recombinant protein from bacteria are scarce. In the present study, continuous electroporation was employed to selectively extract recombinant Protein A from the periplasm of E. coli. For this purpose, a specifically designed flow-through PEF treatment chamber was deployed, operated at 1.5 kg/h, using rectangular pulses of 3 μs at specific energy input levels between 10.3 and 241.9 kJ/kg. Energy input was controlled by variation of the electric field strength (28.4-44.8 kV/cm) and pulse repetition frequency (50-1,000 Hz). The effects of the process parameters on cell viability, product release, and host cell protein (HCP), DNA, as well as endotoxin (ET) loads were investigated. It was found that a maximum product release of 89% was achieved with increasing energy input levels. Cell death also gradually increased, with a maximum inactivation of -0.9 log at 241.9 kJ/kg. The conditions resulting in high release efficiencies while keeping impurities low were electric field strengths ≤ 30 kV/cm and frequencies ≥ 825 Hz. In comparison with high-pressure homogenization, PEF treatment resulted in 40% less HCP load, 96% less DNA load, and 43% less ET load. Therefore, PEF treatment can be an efficient alternative to the cell disintegration processes commonly used in downstream processing.
Collapse
Affiliation(s)
- Felix Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- BOKU Core Facility Food & Bio Processing, Vienna, Austria
| | - Jens Kastenhofer
- Research Division Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Henry Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - David J Wurm
- Research Division Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
7
|
Kastenhofer J, Rajamanickam V, Libiseller-Egger J, Spadiut O. Monitoring and control of E. coli cell integrity. J Biotechnol 2021; 329:1-12. [PMID: 33485861 DOI: 10.1016/j.jbiotec.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Soluble expression of recombinant proteins in E. coli is often done by translocation of the product across the inner membrane (IM) into the periplasm, where it is retained by the outer membrane (OM). While the integrity of the IM is strongly coupled to viability and impurity release, a decrease in OM integrity (corresponding to increased "leakiness") leads to accumulation of product in the extracellular space, strongly impacting the downstream process. Whether leakiness is desired or not, differential monitoring and control of IM and OM integrity are necessary for an efficient E. coli bioprocess in compliance with the guidelines of Quality by Design and Process Analytical Technology. In this review, we give an overview of relevant monitoring tools, summarize the research on factors affecting E. coli membrane integrity and provide a brief discussion on how the available monitoring technology can be implemented in real-time control of E. coli cultivations.
Collapse
Affiliation(s)
- Jens Kastenhofer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Vignesh Rajamanickam
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Julian Libiseller-Egger
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|