1
|
Fan XY, Yu Y, Yao Y, Li WD, Tao FY, Wang N. Applications of Ene-Reductases in the Synthesis of Flavors and Fragrances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18305-18320. [PMID: 38966982 PMCID: PMC11342376 DOI: 10.1021/acs.jafc.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Flavors and fragrances (F&F) are interesting organic compounds in chemistry. These compounds are widely used in the food, cosmetic, and medical industries. Enzymatic synthesis exhibits several advantages over natural extraction and chemical preparation, including a high yield, stable quality, mildness, and environmental friendliness. To date, many oxidoreductases and hydrolases have been used to biosynthesize F&F. Ene-reductases (ERs) are a class of biocatalysts that can catalyze the asymmetric reduction of α,β-unsaturated compounds and offer superior specificity and selectivity; therefore, ERs have been increasingly considered an ideal alternative to their chemical counterparts. This review summarizes the research progress on the use of ERs in F&F synthesis over the past 20 years, including the achievements of various scholars, the differences and similarities among the findings, and the discussions of future research trends related to ERs. We hope this review can inspire researchers to promote the development of biotechnology in the F&F industry.
Collapse
Affiliation(s)
- Xin-Yue Fan
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yuan Yu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yao Yao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Wen-Dian Li
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Fei-Yan Tao
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Na Wang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| |
Collapse
|
2
|
Cheng P, Meng K, Shi X, Jiao M, Han Y, Li X, Liu P, Xiao C. Solid-phase extraction with the functionalization of calcium-sensing receptors onto magnetic microspheres as an affinity probe can capture ligands selectively from herbal extract. Mikrochim Acta 2023; 191:34. [PMID: 38108923 DOI: 10.1007/s00604-023-06092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Magnetic solid phase extraction with the functionalization of protein onto micro- or nano-particles as a probe is favorable for the discovery of new drugs from complicated natural products. Herein, we aimed to develop a rapid method by immobilizing halogenated alkane dehalogenase (Halo)-tagged calcium-sensing receptor (CaSR) directly out of crude cell lysates onto the surface of magnetic microspheres (MM) with no need to purify protein. Thereby we achieved CaSR-functionalized MM for revealing adsorption characteristics of agonist neomycin and screening ligands from herbal medicine Radix Astragali (RA). About 43.87 mg CaSR could be immobilized per 1 g MM within 30 min, and the acquired CaSR-functionalized MM showed good stability and activity for 4 weeks. The maximum adsorption capacity of neomycin on CaSR-functionalized MM was determined as 4.70 × 10-4 ~ 3.96 × 10-4 mol/g within 277 ~ 310 K, and its adsorption isotherm characteristics described best by the Temkin model were further validated using isothermal titration calorimetry. It was inferred that CaSR's affinity for neomycin was driven by electrostatic forces in a spontaneous process when the system reached an equilibrium state. Moreover, the ligands from the RA extract were screened, three of which were assigned as astragaloside IV, ononin, and calycosin based on HPLC-MS. Our findings demonstrated that the functionalization of a receptor onto magnetic materials designed as an affinity probe has the capability to recognize its agonist and capture the ligands selectively from complex matrices like herbs.
Collapse
Affiliation(s)
- Peixuan Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Kaili Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Xiangang Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Meizhi Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Yaokun Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Xia Li
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, People's Republic of China
| | - Pei Liu
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, People's Republic of China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
3
|
Aguiar TQ, Domingues L. Recombinant protein purification and immobilization strategies based on peptides with dual affinity to iron oxide and silica. Biotechnol J 2023; 18:e2300152. [PMID: 37478356 DOI: 10.1002/biot.202300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Iron oxide and silica-based materials have emerged as attractive protein purification and immobilization matrices. His6 has been reported as an effective affinity tag for both iron oxide and silica. Here, the silica-binding tags CotB1p and Car9 were shown to work as effectively as iron oxide-binding tags. Using EGFP as a model protein, commercially available bare iron oxide (BIONs) or silicon dioxide (BSiNs) nanoparticles as low-cost purification/immobilization matrices, and non-hazardous and mild binding and elution conditions, adsorption and desorption studies were performed with lysates from Escherichia coli-producing cells to compare the performance of these dual-affinity tags. Under the conditions tested, the His6 tag stood out as the best-performing tag, followed by CotB1p. Our findings concluded the promising combination of these tags, BIONs and BSiNs for one-step purification of recombinant proteins, and two-step purification and immobilization of recombinant proteins without intermediate buffer exchange. This proof of concept work set the ground for future evaluation of these purification and immobilization strategies using other proteins with different properties, which will be of interest to expand their utility and applicability.
Collapse
Affiliation(s)
- Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Bhattacharjee N, Alonso-Cotchico L, Lucas MF. Enzyme immobilization studied through molecular dynamic simulations. Front Bioeng Biotechnol 2023; 11:1200293. [PMID: 37362217 PMCID: PMC10285225 DOI: 10.3389/fbioe.2023.1200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, simulations have been used to great advantage to understand the structural and dynamic aspects of distinct enzyme immobilization strategies, as experimental techniques have limitations in establishing their impact at the molecular level. In this review, we discuss how molecular dynamic simulations have been employed to characterize the surface phenomenon in the enzyme immobilization procedure, in an attempt to decipher its impact on the enzyme features, such as activity and stability. In particular, computational studies on the immobilization of enzymes using i) nanoparticles, ii) self-assembled monolayers, iii) graphene and carbon nanotubes, and iv) other surfaces are covered. Importantly, this thorough literature survey reveals that, while simulations have been primarily performed to rationalize the molecular aspects of the immobilization event, their use to predict adequate protocols that can control its impact on the enzyme properties is, up to date, mostly missing.
Collapse
|
5
|
Berensmeier S, Rauwolf S, Zanker A, Steegmüller T, Schwaminger S. One Multifunctional Affinity Peptide Tag for Different Non‐Functionalized Materials and Applications. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202255251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S. Berensmeier
- TU Munich Bioseparation Engineering Group Boltzmannstr. 15 85748 Garching Germany
| | - S. Rauwolf
- TU Munich Bioseparation Engineering Group Boltzmannstr. 15 85748 Garching Germany
| | - A. Zanker
- TU Munich Bioseparation Engineering Group Boltzmannstr. 15 85748 Garching Germany
| | - T. Steegmüller
- TU Munich Bioseparation Engineering Group Boltzmannstr. 15 85748 Garching Germany
| | - S. P. Schwaminger
- TU Munich Bioseparation Engineering Group Boltzmannstr. 15 85748 Garching Germany
| |
Collapse
|
6
|
Tang KHD, Lock SSM, Yap PS, Cheah KW, Chan YH, Yiin CL, Ku AZE, Loy ACM, Chin BLF, Chai YH. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154868. [PMID: 35358520 DOI: 10.1016/j.scitotenv.2022.154868] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes/microorganisms to increase the efficiency of microplastics degradation but optimization of enzymatic or microbial activities and synthesis of immobilized enzymes/microorganisms are crucial to overcome the barriers to their wide application.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Serene Sow Mun Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kin Wai Cheah
- Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Andrian Zi En Ku
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| |
Collapse
|
7
|
Ma T, Kong W, Liu Y, Zhao H, Ouyang Y, Gao J, Zhou L, Jiang Y. Asymmetric Hydrogenation of C = C Bonds in a SpinChem Reactor by Immobilized Old Yellow Enzyme and Glucose Dehydrogenase. Appl Biochem Biotechnol 2022; 194:4999-5016. [PMID: 35687305 DOI: 10.1007/s12010-022-03991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
The application of immobilized enzymes in pharmaceutical and bulk chemical production has been shown to be economically viable. We demonstrate the exceptional performance of a method that immobilizes the old yellow enzyme YqjM and glucose dehydrogenase (GDH) on resin for the asymmetric hydrogenation (AH) of C = C bonds in a SpinChem reactor. When immobilized YqjM and GDH are reused 10 times, the conversion of 2-methylcyclopentenone could reach 78%. Which is because the rotor of the SpinChem reactor effectively reduces catalyst damage caused by shear force in the reaction system. When the substrate concentration is 175 mM, an 87% conversion of 2-methylcyclopentenone is obtained. The method is also observed to perform well for the AH of C = C bonds in other unsaturated carbonyl compounds with the SpinChem reactor. Thus, this method has great potential for application in the enzymatic production of chiral compounds.
Collapse
Affiliation(s)
- Teng Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weixi Kong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Hao Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yaping Ouyang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China. .,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China. .,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
| |
Collapse
|
8
|
Immobilization of Ene Reductase in Polyvinyl Alcohol Hydrogel. Protein J 2022; 41:394-402. [PMID: 35715719 DOI: 10.1007/s10930-022-10059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
In this study, ene reductase (ER) was entrapped in polyvinyl alcohol hydrogel, adsorbed on montmorillonite and immobilized covalently on glutaraldehyde activated 3-aminopropyl-functionalized silica gel. Although protein recovery yields were at least 85% for adsorption and covalent immobilization, only the encapsulated ER showed activity. The activity of free and entrapped ER preparations was measured by following NADPH-dependent reduction of 2-cyclohexen-1-one. The both protein recovery and activity recovery yields were calculated as 100% when 1 mg protein was used for immobilization. The both free and entrapped ER preparations showed the same optimum pH and temperature as 7.0 and 30 °C, respectively. The entrapped ER showed 34.4-fold more thermal stability than that of the free ER at 30 °C. Michaelis-Menten constant and maximum velocity values were 0.25 mM and 1.2 U/mg protein, respectively for the free ER towards 2-cyclohexen-1-one. The corresponding values were 1.5 mM and 0.9 U/mg protein for the entrapped ER. The results of time-course reduction of 2-cyclohexen-1-one showed that the entrapped ER catalyzed the reaction as effectively as the free ER. The entrapped ER remained 85% of its initial activity after 10 reused cycles.
Collapse
|
9
|
Zhang W, Ye W, Wang Y, Yan Y. Microfluidic fabrication of tunable alginate-based microfibers for the stable immobilization of enzymes. Biotechnol J 2022; 17:e2200098. [PMID: 35544361 DOI: 10.1002/biot.202200098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Immobilized enzymes have drawn extensive attention due to their enhanced stability, easy separation from reaction mixture, and prominent recyclability. Nevertheless, it is still an ongoing challenge to develop potent immobilization techniques which are capable of stable enzyme encapsulation, minimal loss of activity, and modulability for various enzymes and applications. Here, microfibers with tunable size and composition were fabricated using a home-made microfluidic device. These microfibers were able to efficiently encapsulate bovine serum albumin (BSA), glucose oxidase (GOx), and horseradish peroxidase (HRP). But the physically adsorbed enzymes readily diffused into the catalytic reaction system. The leakage of enzymes could be substantially inhibited by conjugating to polyacrylic acid (PAA) and incorporating into alginate-based microfibers, enabling stable immobilization, improved recyclability, and enhanced thermostability. In addition, GOx and HRP-loaded microfibers were fabricated under the optimized conditions for the visual detection of glucose using the cascade reaction of these enzymes, showing sensitive color change to glucose with concentration range of 0-2 mM. Due to the tunability and versatility, this microfluidic-based microfiber platform may provide a valuable approach to the enzyme immobilization for the cascade catalysis and diagnoses with multiple clinical markers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wen Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| | - Yajun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| |
Collapse
|
10
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
11
|
Zanker AA, Stargardt P, Kurzbach SC, Turrina C, Mairhofer J, Schwaminger SP, Berensmeier S. Direct capture and selective elution of a secreted polyglutamate-tagged nanobody using bare magnetic nanoparticles. Biotechnol J 2022; 17:e2100577. [PMID: 35085417 DOI: 10.1002/biot.202100577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The secretion and direct capture of proteins from the extracellular medium is a promising approach for purification, thus enabling integrated bioprocesses. MAJOR RESULTS We demonstrate the secretion of a nanobody (VHH) to the extracellular medium (EM) and its direct capture by bare, non-functionalized magnetic nanoparticles (MNPs). An ompA signal peptide for periplasmic localization, a polyglutamate-tag (E8 ) for selective MNP binding, and a factor Xa protease cleavage site were fused N-terminally to the nanobody. The extracellular production of the E8 -VHH (36 mg L-1 ) was enabled using a growth-decoupled Escherichia coli-based expression system. The direct binding of E8 -VHH to the bare magnetic nanoparticles was possible and could be drastically improved up to a yield of 88% by adding polyethylene glycol (PEG). The selectivity of the polyglutamate-tag enabled a selective elution of the E8 -VHH from the bare MNPs while raising the concentration factor (5x) and purification factor (4x) significantly. CONCLUSION Our studies clearly show that the unique combination of a growth-decoupled E. coli secretion system, the polyglutamate affinity tag, non-functionalized magnetic nanoparticles, and affinity magnetic precipitation is an innovative and novel way to capture and concentrate nanobodies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexander A Zanker
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | | | - Sophie C Kurzbach
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Chiara Turrina
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | | | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| |
Collapse
|
12
|
Rauwolf S, Steegmüller T, Schwaminger SP, Berensmeier S. Purification of a peptide tagged protein via an affinity chromatographic process with underivatized silica. Eng Life Sci 2021; 21:549-557. [PMID: 34690628 PMCID: PMC8518568 DOI: 10.1002/elsc.202100019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022] Open
Abstract
Silica is widely used for chromatography resins due to its high mechanical strength, column efficiency, easy manufacturing (i.e. controlled size and porosity), and low-cost. Despite these positive attributes to silica, it is currently used as a backbone for chromatographic resins in biotechnological downstream processing. The aim of this study is to show how the octapeptide (RH)4 can be used as peptide tag for high-purity protein purification on bare silica. The tag possesses a high affinity to deprotonated silanol groups because the tag's arginine groups interact with the surface via an ion pairing mechanism. A chromatographic workflow to purify GFP fused with (RH)4 could be implemented. Purities were determined by SDS-PAGE and RP-HPLC. The equilibrium binding capacity of the fusion protein GFP-(RH)4 on silica is 450 mg/g and the dynamic binding capacity around 3 mg/mL. One-step purification from clarified lysate achieved a purity of 93% and a recovery of 94%. Overloading the column enhances the purity to >95%. Static experiments with different buffers showed variability of the method making the system independent from buffer choice. Our designed peptide tag allows bare silica to be utilized in preparative chromatography for downstream bioprocessing; thus, providing a cost saving factor regarding expensive surface functionalization. Underivatized silica in combination with our (RH)4 peptide tag allows the purification of proteins, in all scales, without relying on complex resins.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | - Tobias Steegmüller
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | | | - Sonja Berensmeier
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| |
Collapse
|