1
|
Bae J, Park C, Jung H, Jin S, Cho BK. Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production. RSC Chem Biol 2024; 5:812-832. [PMID: 39211478 PMCID: PMC11353040 DOI: 10.1039/d4cb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024] Open
Abstract
The pressing climate change issues have intensified the need for a rapid transition towards a bio-based circular carbon economy. Harnessing acetogenic bacteria as biocatalysts to convert C1 compounds such as CO2, CO, formate, or methanol into value-added multicarbon chemicals is a promising solution for both carbon capture and utilization, enabling sustainable and green chemical production. Recent advances in the metabolic engineering of acetogens have expanded the range of commodity chemicals and biofuels produced from C1 compounds. However, producing energy-demanding high-value chemicals on an industrial scale from C1 substrates remains challenging because of the inherent energetic limitations of acetogenic bacteria. Therefore, overcoming this hurdle is necessary to scale up the acetogenic C1 conversion process and realize a circular carbon economy. This review overviews the acetogenic bacteria and their potential as sustainable and green chemical production platforms. Recent efforts to address these challenges have focused on enhancing the ATP and redox availability of acetogens to improve their energetics and conversion performances. Furthermore, promising technologies that leverage low-cost, sustainable energy sources such as electricity and light are discussed to improve the sustainability of the overall process. Finally, we review emerging technologies that accelerate the development of high-performance acetogenic bacteria suitable for industrial-scale production and address the economic sustainability of acetogenic C1 conversion. Overall, harnessing acetogenic bacteria for C1 valorization offers a promising route toward sustainable and green chemical production, aligning with the circular economy concept.
Collapse
Affiliation(s)
- Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyunwoo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
3
|
Zhang JZ, Li YZ, Xi ZN, Gao HP, Zhang Q, Liu LC, Li FL, Ma XQ. Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals. Front Bioeng Biotechnol 2024; 12:1395540. [PMID: 39055341 PMCID: PMC11269201 DOI: 10.3389/fbioe.2024.1395540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Acetogenic bacteria (acetogens) are a class of microorganisms with conserved Wood-Ljungdahl pathway that can utilize CO and CO2/H2 as carbon source for autotrophic growth and convert these substrates to acetate and ethanol. Acetogens have great potential for the sustainable production of biofuels and bulk biochemicals using C1 gases (CO and CO2) from industrial syngas and waste gases, which play an important role in achieving carbon neutrality. In recent years, with the development and improvement of gene editing methods, the metabolic engineering of acetogens is making rapid progress. With introduction of heterogeneous metabolic pathways, acetogens can improve the production capacity of native products or obtain the ability to synthesize non-native products. This paper reviews the recent application of metabolic engineering in acetogens. In addition, the challenges of metabolic engineering in acetogens are indicated, and strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Jun-Zhe Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Zhen Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ning Xi
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hui-Peng Gao
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Quan Zhang
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Li-Cheng Liu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Fu-Li Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xiao-Qing Ma
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
4
|
Robles-Iglesias R, Fernández-Blanco C, Nicaud JM, Veiga MC, Kennes C. Unlocking the potential of one-carbon gases (CO 2, CO) for concomitant bioproduction of β-carotene and lipids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115950. [PMID: 38211510 DOI: 10.1016/j.ecoenv.2024.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
This study investigates the use of a Yarrowia lipolytica strain for the bioconversion of syngas-derived acetic acid into β-carotene and lipids. A two-stage process was employed, starting with the acetogenic fermentation of syngas by Clostridium aceticum, metabolising CO, CO2, H2, to produce acetic acid, which is then utilized by Y. lipolytica for simultaneous lipid and β-carotene synthesis. The research demonstrates that acetic acid concentration plays a pivotal role in modulating lipid profiles and enhancing β-carotene production, with increased acetic acid consumption leading to higher yields of these compounds. This approach showcases the potential of using one-carbon gases as substrates in bioprocesses for generating valuable bioproducts, providing a sustainable and cost-effective alternative to more conventional feedstocks and substrates, such as sugars.
Collapse
Affiliation(s)
- Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
5
|
Román-Camacho JJ, Mauricio JC, Santos-Dueñas IM, García-Martínez T, García-García I. Recent advances in applying omic technologies for studying acetic acid bacteria in industrial vinegar production: A comprehensive review. Biotechnol J 2024; 19:e2300566. [PMID: 38403443 DOI: 10.1002/biot.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Vinegar and related bioproducts containing acetic acid as the main component are among the most appreciated fermented foodstuffs in numerous European and Asian countries because of their exceptional organoleptic and bio-healthy properties. Regarding the acetification process and obtaining of final products, there is still a lack of knowledge on fundamental aspects, especially those related to the study of biodiversity and metabolism of the present microbiota. In this context, omic technologies currently allow for the massive analysis of macromolecules and metabolites for the identification and characterization of these microorganisms working in their natural media without the need for isolation. This review approaches comprehensive research on the application of omic tools for the identification of vinegar microbiota, mainly acetic acid bacteria, with subsequent emphasis on the study of the microbial diversity, behavior, and key molecular strategies used by the predominant groups throughout acetification. The current omics tools are enabling both the finding of new vinegar microbiota members and exploring underlying strategies during the elaboration process. The species Komagataeibacter europaeus may be a model organism for present and future research in this industry; moreover, the development of integrated meta-omic analysis may facilitate the achievement of numerous of the proposed milestones. This work might provide useful guidance for the vinegar industry establishing the first steps towards the improvement of the acetification conditions and the development of new products with sensory and bio-healthy profiles adapted to the agri-food market.
Collapse
Affiliation(s)
- Juan J Román-Camacho
- Department of Agricultural Chemistry, Edaphology, and Microbiology (Microbiology area), Severo Ochoa building (C6), Agrifood Campus of International Excellence ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Juan C Mauricio
- Department of Agricultural Chemistry, Edaphology, and Microbiology (Microbiology area), Severo Ochoa building (C6), Agrifood Campus of International Excellence ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Inés María Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering (Chemical Engineering area), Instituto Químico Para la Energía y el Medioambiente (IQUEMA), Marie Curie building (C3), Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology, and Microbiology (Microbiology area), Severo Ochoa building (C6), Agrifood Campus of International Excellence ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering (Chemical Engineering area), Instituto Químico Para la Energía y el Medioambiente (IQUEMA), Marie Curie building (C3), Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Kato J, Matsuo T, Takemura K, Kato S, Fujii T, Wada K, Nakamichi Y, Watanabe M, Aoi Y, Morita T, Murakami K, Nakashimada Y. Isopropanol production via the thermophilic bioconversion of sugars and syngas using metabolically engineered Moorella thermoacetica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:13. [PMID: 38281982 PMCID: PMC10823632 DOI: 10.1186/s13068-024-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Isopropanol (IPA) is a commodity chemical used as a solvent or raw material for polymeric products, such as plastics. Currently, IPA production depends largely on high-CO2-emission petrochemical methods that are not sustainable. Therefore, alternative low-CO2 emission methods are required. IPA bioproduction using biomass or waste gas is a promising method. RESULTS Moorella thermoacetica, a thermophilic acetogenic microorganism, was genetically engineered to produce IPA. A metabolic pathway related to acetone reduction was selected, and acetone conversion to IPA was achieved via the heterologous expression of secondary alcohol dehydrogenase (sadh) in the thermophilic bacterium. sadh-expressing strains were combined with acetone-producing strains, to obtain an IPA-producing strain. The strain produced IPA as a major product using hexose and pentose sugars as substrates (81% mol-IPA/mol-sugar). Furthermore, IPA was produced from CO, whereas acetate was an abundant byproduct. Fermentation using syngas containing both CO and H2 resulted in higher IPA production at the specific rate of 0.03 h-1. The supply of reducing power for acetone conversion from the gaseous substrates was examined by supplementing acetone to the culture, and the continuous and rapid conversion of acetone to IPA showed a sufficient supply of NADPH for Sadh. CONCLUSIONS The successful engineering of M. thermoacetica resulted in high IPA production from sugars. M. thermoacetica metabolism showed a high capacity for acetone conversion to IPA in the gaseous substrates, indicating acetone production as the bottleneck in IPA production for further improving the strain. This study provides a platform for IPA production via the metabolic engineering of thermophilic acetogens.
Collapse
Affiliation(s)
- Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Takeshi Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yusuke Nakamichi
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Masahiro Watanabe
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
7
|
Höfele F, Schoch T, Oberlies C, Dürre P. Heterologous Production of Isopropanol Using Metabolically Engineered Acetobacterium woodii Strains. Bioengineering (Basel) 2023; 10:1381. [PMID: 38135972 PMCID: PMC10741115 DOI: 10.3390/bioengineering10121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The depletion of fossil fuel resources and the CO2 emissions coupled with petroleum-based industrial processes present a relevant issue for the whole of society. An alternative to the fossil-based production of chemicals is microbial fermentation using acetogens. Acetogenic bacteria are able to metabolize CO or CO2 (+H2) via the Wood-Ljungdahl pathway. As isopropanol is widely used in a variety of industrial branches, it is advantageous to find a fossil-independent production process. In this study, Acetobacterium woodii was employed to produce isopropanol via plasmid-based expression of the enzymes thiolase A, CoA-transferase, acetoacetate decarboxylase and secondary alcohol dehydrogenase. An examination of the enzymes originating from different organisms led to a maximum isopropanol production of 5.64 ± 1.08 mM using CO2 + H2 as the carbon and energy source. To this end, the genes thlA (encoding thiolase A) and ctfA/ctfB (encoding CoA-transferase) of Clostridium scatologenes, adc (encoding acetoacetate decarboxylase) originating from C. acetobutylicum and sadH (encoding secondary alcohol dehydrogenase) of C. beijerinckii DSM 6423 were employed. Since bottlenecks in the isopropanol production pathway are known, optimization of the strain was investigated, resulting in a 2.5-fold increase in isopropanol concentration.
Collapse
Affiliation(s)
- Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, Ulm University, 89081 Ulm, Germany
| | - Teresa Schoch
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany (C.O.); (P.D.)
| | - Catarina Oberlies
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany (C.O.); (P.D.)
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany (C.O.); (P.D.)
| |
Collapse
|
8
|
Fernández-Blanco C, Veiga MC, Kennes C. Effect of pH and medium composition on chain elongation with Megasphaera hexanoica producing C 4-C 8 fatty acids. Front Microbiol 2023; 14:1281103. [PMID: 38029098 PMCID: PMC10653306 DOI: 10.3389/fmicb.2023.1281103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Chain elongation technology, which involves fermentation with anaerobic bacteria, has gained attention for converting short and medium chain substrates into valuable and longer-chain products like medium chain fatty acids (MCFAs). In the recent past, the focus of studies with pure chain elongating cultures was on species of other genera, mainly Clostridium kluyveri. Recently, other chain elongators have been isolated that deserve further research, such as Megasphaera hexanoica. Methods In this study, batch studies were performed in bottles with two different media to establish the optimal conditions for growth of M. hexanoica: (a) a medium rich in different sources of nitrogen and (b) a medium whose only source of nitrogen is yeast extract. Also, batch bioreactor studies at pH values of 5.8, 6.5 and 7.2 were set up to study the fermentation of lactate (i.e., electron donor) and acetate (i.e., electron acceptor) by M. hexanoica. Results and discussion Batch bottle studies revealed the yeast extract (YE) containing medium as the most promising in terms of production/cost ratio, producing n-caproate rapidly up to 2.62 ± 0.24 g/L. Subsequent bioreactor experiments at pH 5.8, 6.5, and 7.2 confirmed consistent production profiles, yielding C4-C8 fatty acids. A fourth bioreactor experiment at pH 6.5 and doubling both lactate and acetate concentrations enhanced MCFA production, resulting in 3.7 g/L n-caproate and 1.5 g/L n-caprylate. H2 and CO2 production was observed in all fermentations, being especially high under the increased substrate conditions. Overall, this study provides insights into M. hexanoica's behavior in lactate-based chain elongation and highlights optimization potential for improved productivity.
Collapse
Affiliation(s)
| | | | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology – Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Coruña, Spain
| |
Collapse
|
9
|
Fernández-Blanco C, Robles-Iglesias R, Naveira-Pazos C, Veiga MC, Kennes C. Production of biofuels from C 1 -gases with Clostridium and related bacteria-Recent advances. Microb Biotechnol 2023; 16:726-741. [PMID: 36661185 PMCID: PMC10034633 DOI: 10.1111/1751-7915.14220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/21/2023] Open
Abstract
Clostridium spp. are suitable for the bioconversion of C1 -gases (e.g., CO2 , CO and syngas) into different bioproducts. These products can be used as biofuels and are reviewed here, focusing on ethanol, butanol and hexanol, mainly. The production of higher alcohols (e.g., butanol and hexanol) has hardly been reviewed. Parameters affecting the optimization of the bioconversion process and bioreactor performance are addressed as well as the pathways involved in these bioconversions. New aspects, such as mixotrophy and sugar versus gas fermentation, are also reviewed. In addition, Clostridia can also produce higher alcohols from the integration of the Wood-Ljungdahl pathway and the reverse ß-oxidation pathway, which has also not yet been comprehensively reviewed. In the latter process, the acetogen uses the reducing power of CO/syngas to reduce C4 or C6 fatty acids, previously produced by a chain elongating microorganism (commonly Clostridium kluyveri), into the corresponding bioalcohol.
Collapse
Affiliation(s)
- Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Cecilia Naveira-Pazos
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| |
Collapse
|
10
|
Moreira JPC, Heap JT, Alves JI, Domingues L. Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:24. [PMID: 36788587 PMCID: PMC9930230 DOI: 10.1186/s13068-023-02259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/05/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Developing new bioprocesses to produce chemicals and fuels with reduced production costs will greatly facilitate the replacement of fossil-based raw materials. In most fermentation bioprocesses, the feedstock usually represents the highest cost, which becomes the target for cost reduction. Additionally, the biorefinery concept advocates revenue growth from the production of several compounds using the same feedstock. Taken together, the production of bio commodities from low-cost gas streams containing CO, CO2, and H2, obtained from the gasification of any carbon-containing waste streams or off-gases from heavy industry (steel mills, processing plants, or refineries), embodies an opportunity for affordable and renewable chemical production. To achieve this, by studying non-model autotrophic acetogens, current limitations concerning low growth rates, toxicity by gas streams, and low productivity may be overcome. The Acetobacterium wieringae strain JM is a novel autotrophic acetogen that is capable of producing acetate and ethanol. It exhibits faster growth rates on various gaseous compounds, including carbon monoxide, compared to other Acetobacterium species, making it potentially useful for industrial applications. The species A. wieringae has not been genetically modified, therefore developing a genetic engineering method is important for expanding its product portfolio from gas fermentation and overall improving the characteristics of this acetogen for industrial demands. RESULTS This work reports the development and optimization of an electrotransformation protocol for A. wieringae strain JM, which can also be used in A. wieringae DSM 1911, and A. woodii DSM 1030. We also show the functionality of the thiamphenicol resistance marker, catP, and the functionality of the origins of replication pBP1, pCB102, pCD6, and pIM13 in all tested Acetobacterium strains, with transformation efficiencies of up to 2.0 × 103 CFU/μgDNA. Key factors affecting electrotransformation efficiency include OD600 of cell harvesting, pH of resuspension buffer, the field strength of the electric pulse, and plasmid amount. Using this method, the acetone production operon from Clostridium acetobutylicum was efficiently introduced in all tested Acetobacterium spp., leading to non-native biochemical acetone production via plasmid-based expression. CONCLUSIONS A. wieringae can be electrotransformed at high efficiency using different plasmids with different replication origins. The electrotransformation procedure and tools reported here unlock the genetic and metabolic manipulation of the biotechnologically relevant A. wieringae strains. For the first time, non-native acetone production is shown in A. wieringae.
Collapse
Affiliation(s)
- João P. C. Moreira
- grid.10328.380000 0001 2159 175XCEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal ,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - John T. Heap
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD UK
| | - Joana I. Alves
- grid.10328.380000 0001 2159 175XCEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal ,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
11
|
Perret L, Lacerda de Oliveira Campos B, Herrera Delgado K, Zevaco TA, Neumann A, Sauer J. CO
x
Fixation to Elementary Building Blocks: Anaerobic Syngas Fermentation vs. Chemical Catalysis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lukas Perret
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | | | - Karla Herrera Delgado
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Thomas A. Zevaco
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Anke Neumann
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences 2 – Technical Biology 76131 Karlsruhe Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
12
|
Thi Quynh Le H, Lee EY. Biological production of 2-propanol from propane using a metabolically engineered type I methanotrophic bacterium. BIORESOURCE TECHNOLOGY 2022; 362:127835. [PMID: 36031125 DOI: 10.1016/j.biortech.2022.127835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
2-Propanol is a widely used industrial solvents. Herein, we employed a unique feature of type I methanotrophic bacterium Methylotuvimicrobium alcaliphilum 20Z possessing only particulate methane monooxygenase (pMMO) for one-step direct production of pure 2-propanol from propane. By maintaining cell growth on glycerol, and after deletion of both Ca2+-dependent and La3+-dependent methanol dehydrogenases, propane was converted to 2-propanol by pMMO. Although most of the 2-propanol produced was further oxidized to acetone, deletion of active alcohol dehydrogenase, concomitant with synchronous overexpression of secondary alcohol dehydrogenase, significantly inhibited such undesirable oxidation. As a result, a remarkable enhancement (263 mg/L) of 2-propanol was achieved for 120 h by increasing cell growth with a supply of 50% (v/v) propane in headspace. This is the first demonstration to develop an engineered methanotrophic strain for the one-step direct production of pure 2-propanol from propane using one-phase cultivation without the supply of chemical inhibitors or additional reducing-power sources.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|