1
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
2
|
Peng F, Hong J, Cui J, An YN, Guo Q, Shen Q, Cheng F, Xue YP, Zheng YG. Improvement of an enzymatic cascade synthesis of nicotinamide mononucleotide via protein engineering and reaction-process reinforcement. Biotechnol J 2024; 19:e2300748. [PMID: 38403401 DOI: 10.1002/biot.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Enzymatic synthesis of β-nicotinamide mononucleotide (NMN) from D-ribose has garnered widespread attention due to its cheap material, the use of mild reaction conditions, and the ability to produce highly pure products with the desired optical properties. However, the overall NMN yield of this method is impeded by the low activity of rate-limiting enzymes. The ribose-phosphate diphosphokinase (PRS) and nicotinamide phosphoribosyltransferase (NAMPT), that control the rate of the reaction, were engineered to improve the reaction efficacy. The actives of mutants PRS-H150Q and NAMPT-Y15S were 334% and 57% higher than that of their corresponding wild-type enzymes, respectively. Furthermore, by adding pyrophosphatase, the byproduct pyrophosphate which can inhibit the activity of NAMPT was degraded, leading to a 6.72% increase in NMN yield. Following with reaction-process reinforcement, a high yield of 8.10 g L-1 NMN was obtained after 3 h of reaction, which was 56.86-fold higher than that of the stepwise reaction synthesis (0.14 g L-1 ), indicating that the in vitro enzymatic synthesis of NMN from D-ribose and niacinamide is an economical and feasible route.
Collapse
Affiliation(s)
- Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jian Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jie Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Ya-Ni An
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Qian Guo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|