1
|
Kwon HJ, Gwak S, Park JY, Cho M, Han H. TfNN 15N: A γ- 15N-Labeled Diazo-Transfer Reagent for the Synthesis of β- 15N-Labeled Azides. ACS OMEGA 2022; 7:293-298. [PMID: 35036700 PMCID: PMC8757338 DOI: 10.1021/acsomega.1c04679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Azides are infrared (IR) probes that are important for structure and dynamics studies of proteins. However, they often display complex IR spectra owing to Fermi resonances and multiple conformers. Isotopic substitution of azides weakens the Fermi resonance, allowing more accurate IR spectral analysis. Site-specifically 15N-labeled aromatic azides, but not aliphatic azides, are synthesized through nitrosation. Both 15N-labeled aromatic and aliphatic azides are synthesized through nucleophilic substitution or diazo-transfer reaction but as an isotopomeric mixture. We present the synthesis of TfNN15N, a γ-15N-labeled diazo-transfer reagent, and its use to prepare β-15N-labeled aliphatic as well as aromatic azides.
Collapse
Affiliation(s)
- Hyeok-Jun Kwon
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Sungduk Gwak
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jun Young Park
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Minhaeng Cho
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Hogyu Han
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Gorski A, Starukhin A, Stavrov SS. Mössbauer spectroscopy as a probe of electric field in heme pocket of deoxyheme proteins: theoretical approach. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5294-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Han C, Wang J. Influence of an Unnatural Amino Acid Side Chain on the Conformational Dynamics of Peptides. Chemphyschem 2012; 13:1522-34. [DOI: 10.1002/cphc.201100995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 11/09/2022]
|
5
|
Oh KI, Lee JH, Joo C, Han H, Cho M. β-Azidoalanine as an IR Probe: Application to Amyloid Aβ(16-22) Aggregation. J Phys Chem B 2008; 112:10352-7. [DOI: 10.1021/jp801558k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Joo-Hyun Lee
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Cheonik Joo
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Hogyu Han
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| |
Collapse
|
6
|
Phosphate Assisted Proton Transfer in Water and Sugar Glasses: A Study Using Fluorescence of Pyrene-1-carboxylate and IR Spectroscopy. J Fluoresc 2008; 19:21-31. [DOI: 10.1007/s10895-008-0375-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
|
7
|
Kaposi AD, Vanderkooi JM, Stavrov SS. Infrared absorption study of the heme pocket dynamics of carbonmonoxyheme proteins. Biophys J 2006; 91:4191-200. [PMID: 16980362 PMCID: PMC1635657 DOI: 10.1529/biophysj.105.068254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temperature dependencies of the infrared absorption CO bands of carboxy complexes of horseradish peroxidase (HRP(CO)) in glycerol/water mixture at pH 6.0 and 9.3 are interpreted using the theory of optical absorption bandshape. The bands' anharmonic behavior is explained assuming that there is a higher-energy set of conformational substates (CSS(h)), which are populated upon heating and correspond to the protein substates with disordered water molecules in the heme pocket. Analysis of the second moments of the CO bands of the carboxy complexes of myoglobin (Mb(CO)) and hemoglobin (Hb(CO)), and of HRP(CO) with benzohydroxamic acid (HRP(CO)+BHA), shows that the low energy CSS(h) exists also in the open conformation of Mb(CO), where the heme pocket is spacious enough to accommodate a water molecule. In the HRP(CO)+BHA and closed conformations of Mb(CO) and Hb(CO), the heme pocket is packed with BHA and different amino acids, the CSS(h) has much higher energy and is hardly populated even at the highest temperatures. Therefore only motions of these amino acids contribute to the band broadening. These motions are linked to the protein surface and frozen in the glassy matrix, whereas in the liquid solvent they are harmonic. Thus the second moment of the CO band is temperature-independent in glass and is proportional to the temperature in liquid. The temperature dependence of the second moment of the CO peak of HRP(CO) in the trehalose glass exhibits linear coupling to an oscillator. This oscillator can be a moving water molecule locked in the heme pocket in the whole interval of temperatures or a trehalose molecule located in the heme pocket.
Collapse
Affiliation(s)
- Andras D Kaposi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
8
|
Kawai K, Suzuki T, Oguni M. Low-temperature glass transitions of quenched and annealed bovine serum albumin aqueous solutions. Biophys J 2006; 90:3732-8. [PMID: 16500968 PMCID: PMC1440754 DOI: 10.1529/biophysj.105.075986] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Accepted: 02/01/2006] [Indexed: 11/18/2022] Open
Abstract
To investigate the glass transition behaviors of a 20% (w/w) aqueous solution of bovine serum albumin, heat capacities and enthalpy relaxation rates were measured by adiabatic calorimetry at temperatures ranging from 80 to 300 K. One series of measurements was carried out after quenching from 300 down to 80 K and another after annealing in 200-240 K. The quenched sample showed a heat capacity jump indicating a glass transition temperature T(g) = 170 K, and the annealed sample showed a smaller jump with the T(g) shifted toward the higher temperature side. The temperature dependence of the enthalpy relaxation rates for the quenched sample indicated the presence of two enthalpy relaxation effects: one at around 110 K and the other over a wide temperature range (120-190 K). The annealed sample showed three separate relaxation effects giving 1) T(g) = 110 K, 2) 135 K, and 3) temperature higher than 180 K, whereas nothing around 170 K. These effects were thought to originate, respectively, from the rearrangement motions of 1) primary hydrate water forming a direct hydrogen bond with the protein, 2) part of the internal water localized in the opening of a protein structure, and 3) the disordered region in the protein.
Collapse
Affiliation(s)
- Kiyoshi Kawai
- National Food Research Institute, Tsukuba 305-8642, Japan.
| | | | | |
Collapse
|
9
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Vanderkooi JM, Dashnau JL, Zelent B. Temperature excursion infrared (TEIR) spectroscopy used to study hydrogen bonding between water and biomolecules. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:214-33. [PMID: 15927875 DOI: 10.1016/j.bbapap.2005.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 02/15/2005] [Accepted: 03/09/2005] [Indexed: 11/22/2022]
Abstract
Water is a highly polar molecule that is capable of making four H-bonding linkages. Stability and specificity of folding of water-soluble protein macromolecules are determined by the interplay between water and functional groups of the protein. Yet, under some conditions, water can be replaced with sugar or other polar protic molecules with retention of protein structure. Infrared (IR) spectroscopy allows one to probe groups on the protein that interact with solvent, whether the solvent is water, sugar or glycerol. The basis of the measurement is that IR spectral lines of functional groups involved in H-bonding show characteristic spectral shifts with temperature excursion, reflecting the dipolar nature of the group and its ability to H-bond. For groups involved in H-bonding to water, the stretching mode absorption bands shift to lower frequency, whereas bending mode absorption bands shift to higher frequency as temperature decreases. The results indicate increasing H-bonding and decreasing entropy occurring as a function of temperature, even at cryogenic temperatures. The frequencies of the amide group modes are temperature dependent, showing that as temperature decreases, the amide group H-bonds to water strengthen. These results are relevant to protein stability as a function of temperature. The influence of solvent relaxation is demonstrated for tryptophan fluorescence over the same temperature range where the solvent was examined by infrared spectroscopy.
Collapse
Affiliation(s)
- Jane M Vanderkooi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, 19104-6059, USA.
| | | | | |
Collapse
|