1
|
Schubert L, Langner P, Ehrenberg D, Lorenz-Fonfria VA, Heberle J. Protein conformational changes and protonation dynamics probed by a single shot using quantum-cascade-laser-based IR spectroscopy. J Chem Phys 2022; 156:204201. [PMID: 35649857 DOI: 10.1063/5.0088526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mid-IR spectroscopy is a powerful and label-free technique to investigate protein reactions. In this study, we use quantum-cascade-laser-based dual-comb spectroscopy to probe protein conformational changes and protonation events by a single-shot experiment. By using a well-characterized membrane protein, bacteriorhodopsin, we provide a comparison between dual-comb spectroscopy and our homebuilt tunable quantum cascade laser (QCL)-based scanning spectrometer as tools to monitor irreversible reactions with high time resolution. In conclusion, QCL-based infrared spectroscopy is demonstrated to be feasible for tracing functionally relevant protein structural changes and proton translocations by single-shot experiments. Thus, we envisage a bright future for applications of this technology for monitoring the kinetics of irreversible reactions as in (bio-)chemical transformations.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Victor A Lorenz-Fonfria
- Institute of Molecular Science, Universitat de Valencia, Catedrático José Beltrán Martínez, No. 2, 46980 Paterna, Spain
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
2
|
Szundi I, Pitch SG, Chen E, Farrens DL, Kliger DS. Styrene-maleic acid copolymer effects on the function of the GPCR rhodopsin in lipid nanoparticles. Biophys J 2021; 120:4337-4348. [PMID: 34509506 DOI: 10.1016/j.bpj.2021.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023] Open
Abstract
Styrene-maleic acid (SMA) copolymers solubilize biological membranes to form lipid nanoparticles (SMALPs) that contain membrane proteins surrounded by native lipids, thus enabling the use of a variety of biophysical techniques for structural and functional studies. The question of whether SMALPs provide a truly natural environment or SMA solubilization affects the functional properties of membrane proteins, however, remains open. We address this question by comparing the photoactivation kinetics of rhodopsin, a G-protein-coupled receptor in the disk membranes of rod cells, in native membrane and SMALPs prepared at different molar ratios between SMA(3:1) and rhodopsin. Time-resolved absorption spectroscopy combined with complex kinetic analysis reveals kinetic and mechanistic differences between the native membrane and SMA-stabilized environment. The results suggest a range of molar ratios for nanoparticles suitable for kinetic studies.
Collapse
Affiliation(s)
- Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Stephanie G Pitch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - David L Farrens
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California.
| |
Collapse
|
3
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
4
|
Abstract
Conformational equilibria of G-protein-coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron-electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH+ form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners.
Collapse
|
5
|
Kalmodia S, Parameswaran S, Yang W, Barrow CJ, Krishnakumar S. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: An analytical technique to understand therapeutic responses at the molecular level. Sci Rep 2015; 5:16649. [PMID: 26568521 PMCID: PMC4645174 DOI: 10.1038/srep16649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Rapid monitoring of the response to treatment in cancer patients is essential to predict the outcome of the therapeutic regimen early in the course of the treatment. The conventional methods are laborious, time-consuming, subjective and lack the ability to study different biomolecules and their interactions, simultaneously. Since; mechanisms of cancer and its response to therapy is dependent on molecular interactions and not on single biomolecules, an assay capable of studying molecular interactions as a whole, is preferred. Fourier Transform Infrared (FTIR) spectroscopy has become a popular technique in the field of cancer therapy with an ability to elucidate molecular interactions. The aim of this study, was to explore the utility of the FTIR technique along with multivariate analysis to understand whether the method has the resolution to identify the differences in the mechanism of therapeutic response. Towards achieving the aim, we utilized the mouse xenograft model of retinoblastoma and nanoparticle mediated targeted therapy. The results indicate that the mechanism underlying the response differed between the treated and untreated group which can be elucidated by unique spectral signatures generated by each group. The study establishes the efficiency of non-invasive, label-free and rapid FTIR method in assessing the interactions of nanoparticles with cellular macromolecules towards monitoring the response to cancer therapeutics.
Collapse
Affiliation(s)
- Sushma Kalmodia
- Department of Nano biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai - 600 006, India.,Centre for Chemistry and Biotechnology, Deakin University, Geelong campus, VIC 3216, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell laboratory, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai - 600 006, India
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, Deakin University, Geelong campus, VIC 3216, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Geelong campus, VIC 3216, Australia
| | - Subramanian Krishnakumar
- Department of Nano biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai - 600 006, India
| |
Collapse
|
6
|
Yamazaki Y, Nagata T, Terakita A, Kandori H, Shichida Y, Imamoto Y. Intramolecular interactions that induce helical rearrangement upon rhodopsin activation: light-induced structural changes in metarhodopsin IIa probed by cysteine S-H stretching vibrations. J Biol Chem 2014; 289:13792-800. [PMID: 24692562 DOI: 10.1074/jbc.m113.527606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin undergoes rearrangements of its transmembrane helices after photon absorption to transfer a light signal to the G-protein transducin. To investigate the mechanism by which rhodopsin adopts the transducin-activating conformation, the local environmental changes in the transmembrane region were probed using the cysteine S-H group, whose stretching frequency is well isolated from the other protein vibrational modes. The S-H stretching modes of cysteine residues introduced into Helix III, which contains several key residues for the helical movements, and of native cysteine residues were measured by Fourier transform infrared spectroscopy. This method was applied to metarhodopsin IIa, a precursor of the transducin-activating state in which the intramolecular interactions are likely to produce a state ready for helical movements. No environmental change was observed near the ionic lock between Arg-135 in Helix III and Glu-247 in Helix VI that maintains the inactive conformation. Rather, the cysteine residues that showed environmental changes were located around the chromophore, Ala-164, His-211, and Phe-261. These findings imply that the hydrogen bond between Helix III and Helix V involving Glu-122 and His-211 and the hydrophobic packing between Helix III and Helix VI involving Gly-121, Leu-125, Phe-261, and Trp-265 are altered before the helical rearrangement leading toward the active conformation.
Collapse
Affiliation(s)
- Yoichi Yamazaki
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, the Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Tomoko Nagata
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akihisa Terakita
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, the Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan, and
| | - Hideki Kandori
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, the Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Yoshinori Shichida
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Imamoto
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan,
| |
Collapse
|
7
|
Brown MF. UV-visible and infrared methods for investigating lipid-rhodopsin membrane interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 914:127-53. [PMID: 22976026 DOI: 10.1007/978-1-62703-023-6_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
We describe experimental UV-visible and Fourier transform infrared (FTIR) spectroscopic methods for characterizing lipid-protein interactions for rhodopsin in a membrane bilayer environment. The combination of FTIR and UV-visible difference spectroscopy is used to monitor the structural and functional changes during rhodopsin activation. Investigations of how membrane lipids stabilize various rhodopsin photoproducts are analogous to mutating the protein in terms of gain or loss of function. Interpretation of the results entails a flexible surface model for explaining membrane lipid-protein interactions through material properties relevant to biological activity.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Quaroni L, Zlateva T, Normand E. Detection of Weak Absorption Changes from Molecular Events in Time-Resolved FT-IR Spectromicroscopy Measurements of Single Functional Cells. Anal Chem 2011; 83:7371-80. [DOI: 10.1021/ac201318z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luca Quaroni
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Theodora Zlateva
- Department of Biochemistry and Cancer Research Center, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Elise Normand
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK, S7N 0X4, Canada
| |
Collapse
|
9
|
Zaitseva E, Saavedra M, Banerjee S, Sakmar TP, Vogel R. SEIRA spectroscopy on a membrane receptor monolayer using lipoprotein particles as carriers. Biophys J 2011; 99:2327-35. [PMID: 20923668 DOI: 10.1016/j.bpj.2010.06.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022] Open
Abstract
Surface-enhanced infrared absorption (SEIRA) difference spectroscopy can probe reactions in a protein monolayer tethered to a nanostructured gold surface. SEIRA studies of membrane proteins, however, remain challenging due to sample stability, effects of the metal surface on function, and the need for a membrane-mimicking environment. Here we demonstrate and characterize a model system for membrane receptor investigations using SEIRA spectroscopy. The system employs nanoscale apolipoprotein bound bilayer (NABB) particles, similar to discoidal high-density lipoprotein particles, as soluble carriers for the G-protein-coupled receptor rhodopsin. The His-tag of the engineered apolipoprotein allows for selective binding of the NABBs to a Ni-NTA modified surface, while the lipid environment of the particle ensures stability and protection of the embedded receptor. Using SEIRA spectroscopy, we followed specific binding of rhodopsin-loaded NABB particles to the surface and formation of a membrane protein monolayer. Functionality of the photoreceptor in the immobilized NABBs was probed by SEIRA difference spectroscopy confirming protein conformational changes associated with photoactivation. Orientation of the immobilized NABB particles was assessed by comparing SEIRA data with polarized attenuated total reflection-Fourier-transform infrared spectroscopy. Thus, SEIRA difference spectroscopy supported by the NABB technology provides a promising approach for further functional studies of transmembrane receptors.
Collapse
Affiliation(s)
- Ekaterina Zaitseva
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Katayama K, Furutani Y, Kandori H. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine. J Phys Chem B 2010; 114:9039-46. [PMID: 20557105 DOI: 10.1021/jp102288c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In bovine rhodopsin, 11-cis-retinal forms a Schiff base linkage with Lys296. The Schiff base is not reactive to hydroxylamine in the dark, which is consistent with the well-protected retinal binding site. In contrast, under illumination it easily forms all-trans retinal oxime, resulting in the loss of color. This suggests that activation of rhodopsin creates a specific reaction channel for hydroxylamine or loosens the chromophore binding pocket. In the present study, to extract structural information on the Schiff base vicinity and to understand the changes upon activation of rhodopsin, we compared light-induced FTIR difference spectra of bovine rhodopsin in the presence and absence of hydroxylamine under physiological pH (approximately 7). Although the previous FTIR study did not observe the complex formation between rhodopsin and G-protein transducin in hydrated films, the present study clearly shows that hydrated films can be used for studies of the interaction between rhodopsin and hydroxylamine. Hydroxylamine does not react with the Schiff base of Meta-I intermediate trapped at 240 K, possibly because of decreased conformational motions under the frozen environment, while FTIR spectroscopy showed that hydroxylamine affects the hydrogen bonds of the Schiff base and water molecules in Meta-I. In contrast, formation of the retinal oxime was clearly observed at 280 K, the characteristic temperature of Meta-II accumulation in the absence of hydroxylamine, and time-dependent formation of retinal oxime was observed from Meta-II at 265 K as well. The obtained difference FTIR spectra of retinal oxime and opsin are different from that of Meta-II. It is likely that the antiparallel beta-sheet constituting a part of the retinal binding pocket at the extracellular surface is structurally disrupted in the presence of hydroxylamine, which allows the hydrolysis of the Schiff base into retinal oxime.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | |
Collapse
|
11
|
Zaitseva E, Brown MF, Vogel R. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate. J Am Chem Soc 2010; 132:4815-21. [PMID: 20230054 DOI: 10.1021/ja910317a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photon absorption by rhodopsin is proposed to lead to an activation pathway that is described by the extended reaction scheme Meta I <==>Meta II(a) <==> Meta II(b) <==> Meta II(b)H(+), where Meta II(b)H(+) is thought to be the conformational substate that activates the G protein transducin. Here we test this extended scheme for rhodopsin in a membrane bilayer environment by investigating lipid perturbation of the activation mechanism. We found that symmetric membrane lipids having two unsaturated acyl chains, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), selectively stabilize the Meta II(a) substate in the above mechanism. By combining FTIR and UV-visible difference spectroscopy, we characterized the structural and functional changes involved in the transition to the Meta II(a) intermediate, which links the inactive Meta I intermediate with the Meta II(b) states formed by helix rearrangement. Besides the opening of the Schiff base ionic lock, the Meta II(a) substate is characterized by an activation switch in a conserved water-mediated hydrogen-bonded network involving transmembrane helices H1/H2/H7, which is sensed by its key residue Asp83. On the other hand, movement of retinal toward H5 and its interaction with another interhelical H3/H5 network mediated by His211 and Glu122 is absent in Meta II(a). The latter rearrangement takes place only in the subsequent transition to Meta II(b), which has been previously associated with movement of H6. Our results imply that activating structural changes in the H1/H2/H7 network are triggered by disruption of the Schiff base salt bridge and occur prior to other chromophore-induced changes in the H3/H5 network and the outward tilt of H6 in the activation process.
Collapse
Affiliation(s)
- Ekaterina Zaitseva
- Biophysics Section, Institute of Molecular Medicine and Cell Research, University of Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
12
|
Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 2010; 464:1386-9. [DOI: 10.1038/nature08948] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/23/2010] [Indexed: 11/08/2022]
|
13
|
Lüdeke S, Mahalingam M, Vogel R. Rhodopsin activation switches in a native membrane environment. Photochem Photobiol 2009; 85:437-41. [PMID: 19267869 DOI: 10.1111/j.1751-1097.2008.00490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elucidation of structure-function relationships of membrane proteins still poses a considerable challenge due to the sometimes profound influence of the lipid bilayer on the functional properties of the protein. The visual pigment rhodopsin is a prototype of the family of G protein-coupled transmembrane receptors and a considerable part of our knowledge on its activation mechanisms has been derived from studies on detergent-solubilized proteins. This includes in particular the events associated with the conformational transitions of the receptor from the still inactive Meta I to the Meta II photoproduct states, which are involved in signaling. These events involve disruption of an internal salt bridge of the retinal protonated Schiff base, movement of helices and proton uptake from the solvent by the conserved cytoplasmic E(D)RY network around Glu134. As the equilibria associated with these events are considerably altered by the detergent environment, we set out to investigate these equilibria in the native membrane environment and to develop a coherent thermodynamic model of these activating steps using UV-visible and Fourier-transform infrared spectroscopy as complementary techniques. Particular emphasis is put on the role of protonation of Glu134 from the solvent, which is a thermodynamic prerequisite for full receptor activation in membranes, but not in detergent. In view of the conservation of this carboxylate group in family A G protein-coupled receptors, it may also play a similar role in the activation of other family members.
Collapse
Affiliation(s)
- Steffen Lüdeke
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
14
|
Schwinté P, Gärtner W, Sharda S, Mroginski MA, Hildebrandt P, Siebert F. The Photoreactions of Recombinant Phytochrome CphA from the CyanobacteriumCalothrixPCC7601: A Low-Temperature UV-Vis and FTIR Study. Photochem Photobiol 2009; 85:239-49. [DOI: 10.1111/j.1751-1097.2008.00426.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Standfuss J, Zaitseva E, Mahalingam M, Vogel R. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin. J Mol Biol 2008; 380:145-57. [PMID: 18511075 PMCID: PMC2726285 DOI: 10.1016/j.jmb.2008.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/12/2008] [Accepted: 04/21/2008] [Indexed: 11/16/2022]
Abstract
Disruption of an interhelical salt bridge between the retinal protonated Schiff base linked to H7 and Glu113 on H3 is one of the decisive steps during activation of rhodopsin. Using previously established stabilization strategies, we engineered a stabilized E113Q counterion mutant that converted rhodopsin to a UV-absorbing photoreceptor with deprotonated Schiff base and allowed reconstitution into native-like lipid membranes. Fourier-transform infrared difference spectroscopy reveals a deprotonated Schiff base in the photoproducts of the mutant up to the active state Meta II, the absence of the classical pH-dependent Meta I/Meta II conformational equilibrium in favor of Meta II, and an anticipation of active state features under conditions that stabilize inactive photoproduct states in wildtype rhodopsin. Glu181 on extracellular loop 2, is found to be unable to maintain a counterion function to the Schiff base on the activation pathway of rhodopsin in the absence of the primary counterion, Glu113. The Schiff base becomes protonated in the transition to Meta III. This protonation is, however, not associated with a deactivation of the receptor, in contrast to wildtype rhodopsin. Glu181 is suggested to be the counterion in the Meta III state of the mutant and appears to be capable of stabilizing a protonated Schiff base in Meta III, but not of constraining the receptor in an inactive conformation.
Collapse
Affiliation(s)
- Jörg Standfuss
- Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
16
|
FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations. Biophys J 2008; 95:1256-67. [PMID: 18390618 DOI: 10.1529/biophysj.108.131441] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fourier transform infrared spectroscopy was used to analyze the chromophore structure in the parent states Pr and Pfr of plant phytochrome phyA and the respective photoproducts lumi-R and lumi-F. The spectra were obtained from phyA adducts assembled with either uniformly or selectively isotope-labeled phytochromobilin and phycocyanobilin. The interpretation of the experimental spectra is based on the spectra of chromophore models calculated by density functional theory. Global (13)C-labeling of the tetrapyrrole allows for the discrimination between chromophore and protein bands in the Fourier transform infrared difference spectra. All infrared difference spectra display a prominent difference band attributable to a stretching mode with large contributions from the methine bridge between the inner pyrrole rings (B-C stretching). Due to mode coupling, frequencies and isotopic shifts of this mode suggest that the Pr chromophore may adopt a distorted ZZZssa or ZZZasa geometry with a twisted A-B methine bridge. The transition to lumi-R is associated with only minor changes of the amide I bands indicating limited protein structural changes during the isomerization site of the C-D methine bridge. Major protein structural changes occur upon the transition to Pfr in which the chromophore adopts a ZZEssa or ZZEasa-like state. In addition, specific interactions with the protein alter the structure of the B-C methine bridge as concluded from the substantial downshift of the respective stretching mode. These interactions are removed during the photoreaction to lumi-F (ZZE-->ZZZ), which involves only small protein structural changes.
Collapse
|
17
|
Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences. Biophys J 2008; 94:3217-26. [PMID: 18199669 DOI: 10.1529/biophysj.107.105163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the low-frequency terahertz spectroscopy of two photoactive protein systems, rhodopsin and bacteriorhodopsin, as a means to characterize collective low-frequency motions in helical transmembrane proteins. From this work, we found that the nature of the vibrational motions activated by terahertz radiation is surprisingly similar between these two structurally similar proteins. Specifically, at the lowest frequencies probed, the cytoplasmic loop regions of the proteins are highly active; and at the higher terahertz frequencies studied, the extracellular loop regions of the protein systems become vibrationally activated. In the case of bacteriorhodopsin, the calculated terahertz spectra are compared with the experimental terahertz signature. This work illustrates the importance of terahertz spectroscopy to identify vibrational degrees of freedom which correlate to known conformational changes in these proteins.
Collapse
|
18
|
Baenziger JE, Ryan SE, Goodreid MM, Vuong NQ, Sturgeon RM, daCosta CJB. Lipid Composition Alters Drug Action at the Nicotinic Acetylcholine Receptor. Mol Pharmacol 2007; 73:880-90. [DOI: 10.1124/mol.107.039008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Nakamichi H, Okada T. X-ray crystallographic analysis of 9-cis-rhodopsin, a model analogue visual pigment. Photochem Photobiol 2007; 83:232-5. [PMID: 17576343 DOI: 10.1562/2006-13-ra-920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent progress in high-resolution structural study of rhodopsin has been enabled by a novel selective extraction procedure with rod photoreceptor cells. In this study, we applied the method for rapid and efficient preparation of a purified analogue pigment using bovine rod outer segment membranes with 9-cis-retinal. After complete bleaching of the membranes and subsequent regeneration with the exogenous retinal, 9-cis-rhodopsin is selectively extracted from the membranes using combination of zinc and heptylthioglucoside. The solubilized sample, even with a small amount of contaminating retinal oximes, is shown to be pure enough for three-dimensional crystallization. The X-ray diffraction from 9-cis-rhodopsin crystals was examined and the electron density map at 2.9 angstroms resolution in the chromophore region can be fitted well with the model of 9-cis-retinal Schiff base.
Collapse
Affiliation(s)
- Hitoshi Nakamichi
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | |
Collapse
|
20
|
Makhynya Y, Hussain Z, Bauschlicher T, Schwinte P, Siebert F, Gärtner W. Synthesis of Selectively13C-Labelled Bilin Compounds. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600677] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Lehmann N, Alexiev U, Fahmy K. Linkage Between the Intramembrane H-bond Network Around Aspartic Acid 83 and the Cytosolic Environment of Helix 8 in Photoactivated Rhodopsin. J Mol Biol 2007; 366:1129-41. [PMID: 17196983 DOI: 10.1016/j.jmb.2006.11.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/21/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Understanding the coupling between conformational changes in the intramembrane domain and at the membrane-exposed surface of the bovine photoreceptor rhodopsin, a prototypical G protein-coupled receptor (GPCR), is crucial for the elucidation of molecular mechanisms in GPCR activation. Here, we have combined Fourier transform infrared (FTIR) and fluorescence spectroscopy to address the coupling between conformational changes in the intramembrane region around the retinal and the environment of helix 8, a putative cytosolic surface switch region in class-I GPCRs. Using FTIR/fluorescence cross-correlation we show specifically that surface alterations monitored by emission changes of fluorescein bound to Cys316 in helix 8 of rhodopsin are highly correlated with (i) H-bonding to Asp83 proximal of the retinal Schiff base but not to Glu122 close to the beta-ionone and (ii) with a metarhodopsin II (MII)-specific 1643 cm(-1) IR absorption change, indicative of a partial loss of secondary structure in helix 8 upon MII formation. These correlations are disrupted by limited C-terminal proteolysis but are maintained upon binding of a transducin alpha-subunit (G(talpha))-derived peptide, which stabilizes the MII state. Our results suggest that additional C-terminal cytosolic loop contacts monitored by an amide II absorption at 1557 cm(-1) play a functionally crucial role in keeping helix 8 in the position in which its environment is strongly coupled to the retinal-binding site near the Schiff base. In the intramembrane region, this coupling is mediated by the H-bonding network that connects Asp83 to the NPxxY(x)F motif preceding helix 8.
Collapse
Affiliation(s)
- Nicole Lehmann
- Institute of Radiation Physics, Biophysics Division, Forschungszentrum Dresden-Rossendorf, PF 510119, D-01314 Dresden, Germany
| | | | | |
Collapse
|
22
|
Lewis JW, Szundi I, Kazmi MA, Sakmar TP, Kliger DS. Proton movement and photointermediate kinetics in rhodopsin mutants. Biochemistry 2006; 45:5430-9. [PMID: 16634624 PMCID: PMC2527178 DOI: 10.1021/bi0525775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of ionizable amino acid side chains in the bovine rhodopsin activation mechanism was studied in mutants E134Q, E134R/R135E, H211F, and E122Q. All mutants exhibited bathorhodopsin stability on the 30 ns to 1 micros time scale similar to that of the wild type. Lumirhodopsin decay was also similar to that of the wild type except for the H211F mutant where early decay (20 micros) to a second form of lumirhodopsin was seen, followed by formation of an extremely long-lived Meta I(480) product (34 ms), an intermediate which forms to a much reduced extent, if at all, in dodecyl maltoside suspensions of wild-type rhodopsin. A smaller amount of a similar long-lived Meta I(480) product was seen after photolysis of E122Q, but E134Q and E134R/R135Q displayed kinetics much more similar to those of the wild type under these conditions (i.e., no Meta I(480) product). These results support the idea that specific interaction of His211 and Glu122 plays a significant role in deprotonation of the retinylidene Schiff base and receptor activation. Proton uptake measurements using bromcresol purple showed that E122Q was qualitatively similar to wild-type rhodopsin, with at least one proton being released during lumirhodopsin decay per Meta I(380) intermediate formed, followed by uptake of at least two protons per rhodopsin bleached on a time scale of tens of milliseconds. Different results were obtained for H211F, E134Q, and E134R/R135E, which all released approximately two protons per rhodopsin bleached. These results show that several ionizable groups besides the Schiff base imine are affected by the structural changes involved in rhodopsin activation. At least two proton uptake groups and probably at least one proton release group in addition to the Schiff base are present in rhodopsin.
Collapse
Affiliation(s)
| | | | | | | | - David S. Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, Telephone: (831) 459-2106, FAX: (831) 459-4136,
| |
Collapse
|
23
|
Kusnetzow AK, Altenbach C, Hubbell WL. Conformational states and dynamics of rhodopsin in micelles and bilayers. Biochemistry 2006; 45:5538-50. [PMID: 16634635 PMCID: PMC2739654 DOI: 10.1021/bi060101v] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitroxide sensors were placed in rhodopsin at sites 140, 227, 250, and 316 to monitor the dynamics and conformation of the receptor at the cytoplasmic surface in solutions of dodecyl maltoside (DM), digitonin, and phospholipid bilayers of two compositions. The EPR spectra reveal a remarkable similarity of rhodopsin structure and the activating conformational change in DM and bilayers, the hallmark of which is an outward tilt of transmembrane helix VI. This conformational change is blocked in solutions of digitonin, although changes in optical absorbance accompany activation, showing that absorbance and structural changes are not necessarily coupled. In DM and bilayers, the receptor is apparently in equilibrium between conformational substates whose populations are modulated by activation. Despite the general similarity in the two environments, the receptor conformations have increased flexibility in DM relative to bilayers. For the activated receptor in DM and bilayers, a pH-dependent conformational equilibrium is identified that may correspond to the optically characterized MII(a)()-MII(b)() equilibrium. No specific effects of headgroup composition on receptor conformation in lipid bilayers were found.
Collapse
Affiliation(s)
- Ana Karin Kusnetzow
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-7008, USA
| | | | | |
Collapse
|
24
|
Teller DC, Stenkamp RE, Palczewski K. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer. FEBS Lett 2003; 555:151-9. [PMID: 14630336 PMCID: PMC1468034 DOI: 10.1016/s0014-5793(03)01152-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extensive sequence data and structural sampling of expressed proteins from different species lead to the idea that entire molecules or specific domain folds belong to large superfamilies of proteins. A subset of G protein-coupled receptors, one of the largest families involved in cellular signaling, rod and cone opsins are involved in phototransduction in photoreceptor cells. Here, the evolutionary analysis of opsin sequences and structures predicts key residues involved in the transmission of the signal from the binding site of the chromophore to the cytoplasmic surface and residues that are involved in the spectral tuning of opsins to short wavelengths of light.
Collapse
Affiliation(s)
- David C Teller
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
25
|
Crozier PS, Stevens MJ, Forrest LR, Woolf TB. Molecular Dynamics Simulation of Dark-adapted Rhodopsin in an Explicit Membrane Bilayer: Coupling between Local Retinal and Larger Scale Conformational Change. J Mol Biol 2003; 333:493-514. [PMID: 14556740 DOI: 10.1016/j.jmb.2003.08.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The light-driven photocycle of rhodopsin begins the photoreceptor cascade that underlies visual response. In a sequence of events, the retinal covalently attached to the rhodopsin protein undergoes a conformational change that communicates local changes to a global conformational change throughout the whole protein. In turn, the large-scale protein change then activates G-proteins and signal amplification throughout the cell. The nature of this change, involving a coupling between a local process and larger changes throughout the protein, may be important for many membrane proteins. In addition, functional work has shown that this coupling occurs with different efficiency in different lipid settings. To begin to understand the nature of the efficiency of this coupling in different lipid settings, we present a molecular dynamics study of rhodopsin in an explicit dioleoyl-phosphatidylcholine bilayer. Our system was simulated for 40 ns and provides insights into the very early events of the visual cascade, before the full transition and activation have occurred. In particular, we see an event near 10 ns that begins with a change in hydrogen bonding near the retinal and that leads through a series of coupled changes to a shift in helical tilt. This type of event, though rare on the molecular dynamics time-scale, could be an important clue to the types of coupling that occur between local and large-scale conformational change in many membrane proteins.
Collapse
Affiliation(s)
- Paul S Crozier
- Sandia National Laboratories, P.O. Box 5800, MS 1411, Albuquerque, NM 87185-1411, USA
| | | | | | | |
Collapse
|