1
|
Qian L, Zhang K, Guo X, Zhou J, Yu M. Single-Chain Mechanical Properties of Gelatin: A Single-Molecule Study. Polymers (Basel) 2022; 14:869. [PMID: 35267692 PMCID: PMC8912665 DOI: 10.3390/polym14050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Gelatin is an important natural biological resource with a wide range of applications in the pharmaceutical, industrial and food industries. We investigated the single-chain behaviors of gelatin by atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), and found that gelatin exists as long chains by fitting with the M-FJC model. By comparing the single-chain elasticity in a nonpolar organic solvent (nonane) and DI water, it was surprising to find that there was almost no difference in the single-chain elasticity of gelatin in nonane and DI water. Considering the specificity of gelatin solubility and the solvent size effect of nonane molecules, when a single gelatin chain is pulled into loose nonane, dehydration does not occur due to strong binding water interactions. Gelatin chains can only interact with water molecules at high temperatures; therefore, no further interaction of single gelatin chains with water molecules occurred at the experimental temperature. This eventually led to almost no difference in the single-chain F-E curves under the two conditions. It is expected that our study will enable the deep exploration of the interaction between water molecules and gelatin and provide a theoretical basis and experimental foundation for the design of gelatin-based materials with more functionalities.
Collapse
Affiliation(s)
- Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510000, China;
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Junyu Zhou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| |
Collapse
|
2
|
Gelatin Methacryloyl Hydrogels for the Localized Delivery of Cefazolin. Polymers (Basel) 2021; 13:polym13223960. [PMID: 34833259 PMCID: PMC8618379 DOI: 10.3390/polym13223960] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
The tuneability of hydrogels renders them promising candidates for local drug delivery to prevent and treat local surgical site infection (SSI) while avoiding the systemic side-effects of intravenous antibiotic injections. Here, we present a newly developed gelatin methacryloyl (GelMA)-based hydrogel drug delivery system (GelMA-DDS) to locally deliver the broad-spectrum antibiotic cefazolin for SSI prophylaxis and treatment. Antibiotic doses from 3 µg to 90 µg were loaded in photocrosslinked GelMA hydrogel discs with 5 to 15% w/v polymer concentration and drug encapsulation efficiencies, mechanical properties, crosslinking and release kinetics, as well as bacterial growth inhibition were assessed. Our results demonstrate that all GelMA groups supported excellent drug encapsulation efficiencies of up to 99%. Mechanical properties of the GelMA-DDS were highly tuneable and unaffected by the loading of small to medium doses of cefazolin. The diffusive and the proteolytic in vitro drug delivery of all investigated cefazolin doses was characterized by a burst release, and the delivered cefazolin amount was directly proportional to the encapsulated dose. Accelerated enzymatic degradation of the GelMA-DDS followed zero-order kinetics and was dependent on both the cefazolin dose and GelMA concentration (3-13 h). Finally, we demonstrate that cefazolin delivered from GelMA induced a dose-dependent antibacterial efficacy against S. aureus, in both a broth and a diffusive assay. The cefazolin-loaded GelMA-DDS presented here provides a highly tuneable and easy-to-use local delivery system for the prophylaxis and treatment of SSI.
Collapse
|
3
|
Deciphering the Molecular Mechanism of Water Interaction with Gelatin Methacryloyl Hydrogels: Role of Ionic Strength, pH, Drug Loading and Hydrogel Network Characteristics. Biomedicines 2021; 9:biomedicines9050574. [PMID: 34069533 PMCID: PMC8161260 DOI: 10.3390/biomedicines9050574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
Water plays a primary role in the functionality of biomedical polymers such as hydrogels. The state of water, defined as bound, intermediate, or free, and its molecular organization within hydrogels is an important factor governing biocompatibility and hemocompatibility. Here, we present a systematic study of water states in gelatin methacryloyl (GelMA) hydrogels designed for drug delivery and tissue engineering applications. We demonstrate that increasing ionic strength of the swelling media correlated with the proportion of non-freezable bound water. We attribute this to the capability of ions to create ion–dipole bonds with both the polymer and water, thereby reinforcing the first layer of polymer hydration. Both pH and ionic strength impacted the mesh size, having potential implications for drug delivery applications. The mechanical properties of GelMA hydrogels were largely unaffected by variations in ionic strength or pH. Loading of cefazolin, a small polar antibiotic molecule, led to a dose-dependent increase of non-freezable bound water, attributed to the drug’s capacity to form hydrogen bonds with water, which helped recruit water molecules in the hydrogels’ first hydration layer. This work enables a deeper understanding of water states and molecular arrangement at the hydrogel–polymer interface and how environmental cues influence them.
Collapse
|
4
|
Water content influences the vitrified properties of CAHS proteins. Mol Cell 2021; 81:411-413. [PMID: 33545054 DOI: 10.1016/j.molcel.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
|
5
|
Liu Y, Weng R, Wang W, Wei X, Li J, Chen X, Liu Y, Lu F, Li Y. Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types. Int J Biol Macromol 2020; 162:405-413. [DOI: 10.1016/j.ijbiomac.2020.06.185] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
|
6
|
Gilchrist AE, Lee S, Hu Y, Harley BA. Soluble Signals and Remodeling in a Synthetic Gelatin-Based Hematopoietic Stem Cell Niche. Adv Healthc Mater 2019; 8:e1900751. [PMID: 31532901 PMCID: PMC6813872 DOI: 10.1002/adhm.201900751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow within niches that provide microenvironmental signals in the form of biophysical cues, bound and diffusible biomolecules, and heterotypic cell-cell interactions that influence HSC fate decisions. This study seeks to inform the development of a synthetic culture platform that promotes ex vivo HSC expansion without exhaustion. A library of methacrylamide-functionalized gelatin (GelMA) hydrogels is used to explore remodeling and crosstalk from mesenchymal stromal cells (MSCs) on the expansion and quiescence of murine HSCs. The use of a degradable GelMA hydrogel enables MSC-mediated remodeling, yielding dynamic shifts in the matrix environment over time. An initially low-diffusivity hydrogel for co-culture of hematopoietic stem and progenitor cells to MSCs facilitates maintenance of an early progenitor cell population over 7 days. Excitingly, this platform promotes retention of a quiescent HSC population compared to HSC monocultures. These studies reveal MSC-density-dependent upregulation of MMP-9 and changes in hydrogel mechanical properties (ΔE = 2.61 ± 0.72) suggesting MSC-mediated matrix remodeling may contribute to a dynamic culture environment. Herein, a 3D hydrogel is reported for ex vivo HSC culture, in which HSC expansion and quiescence is sensitive to hydrogel properties, MSC co-culture, and MSC-mediated hydrogel remodeling.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Sunho Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Yuhang Hu
- Department of Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta, GA 30332
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|
7
|
Paramita VD, Kasapis S. Molecular dynamics of the diffusion of natural bioactive compounds from high-solid biopolymer matrices for the design of functional foods. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Taurin S, Almomen AA, Pollak T, Kim SJ, Maxwell J, Peterson CM, Owen SC, Janát-Amsbury MM. Thermosensitive hydrogels a versatile concept adapted to vaginal drug delivery. J Drug Target 2017; 26:533-550. [PMID: 29096548 DOI: 10.1080/1061186x.2017.1400551] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vaginal drug delivery represents an attractive strategy for local and systemic delivery of drugs otherwise poorly absorbed after oral administration. The rather dense vascular network, mucus permeability and the physiological phenomenon of the uterine first-pass effect can all be exploited for therapeutic benefit. However, several physiological factors such as an acidic pH, constant secretion, and turnover of mucus as well as varying thickness of the vaginal epithelium can impact sustained drug delivery. In recent years, polymers have been designed to tackle challenges mentioned above. In particular, thermosensitive hydrogels hold great promise due to their stability, biocompatibility, adhesion properties and adjustable drug release kinetics. Here, we discuss the physiological and anatomical uniqueness of the vaginal environment and how it impacts the safe and efficient vaginal delivery and also reviewed several thermosensitive hydrogels deemed suitable for vaginal drug delivery by addressing specific characteristics, which are essential to engage the vaginal environment successfully.
Collapse
Affiliation(s)
- Sebastien Taurin
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - Aliyah A Almomen
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Tatianna Pollak
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - Sun Jin Kim
- b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - John Maxwell
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - C Matthew Peterson
- c Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology , University of Utah Health Science Center , Salt Lake City , UT , USA
| | - Shawn C Owen
- b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA.,d Department of Bioengineering , University of Utah , Salt Lake City , UT , USA
| | - Margit M Janát-Amsbury
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA.,c Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology , University of Utah Health Science Center , Salt Lake City , UT , USA.,d Department of Bioengineering , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
9
|
Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I, Rebecchi L, Pielak GJ, Koshland D, Goldstein B. Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. Mol Cell 2017; 65:975-984.e5. [PMID: 28306513 DOI: 10.1016/j.molcel.2017.02.018] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 11/19/2022]
Abstract
Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that tardigrades possess potentially novel mechanisms for surviving desiccation. Here we show that tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation tolerance. TDP genes are constitutively expressed at high levels or induced during desiccation in multiple tardigrade species. TDPs are required for tardigrade desiccation tolerance, and these genes are sufficient to increase desiccation tolerance when expressed in heterologous systems. TDPs form non-crystalline amorphous solids (vitrify) upon desiccation, and this vitrified state mirrors their protective capabilities. Our study identifies TDPs as functional mediators of tardigrade desiccation tolerance, expanding our knowledge of the roles and diversity of disordered proteins involved in stress tolerance.
Collapse
Affiliation(s)
- Thomas C Boothby
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hugo Tapia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexandra H Brozena
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Samantha Piszkiewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin E Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Doug Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Alba K, Kasapis S, Kontogiorgos V. Influence of pH on mechanical relaxations in high solids LM-pectin preparations. Carbohydr Polym 2015; 127:182-8. [PMID: 25965472 DOI: 10.1016/j.carbpol.2015.03.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/18/2022]
Abstract
The influence of pH on the mechanical relaxation of LM-pectin in the presence of co-solute has been investigated by means of differential scanning calorimetry, ζ-potential measurements and small deformation dynamic oscillation in shear. pH was found to affect the conformational properties of the polyelectrolyte altering its structural behavior. Cooling scans in the vicinity of the glass transition region revealed a remarkable change in the viscoelastic functions as the polyelectrolyte rearranges from extended (neutral pH) to compact conformations (acidic pH). This conformational rearrangement was experimentally observed to result in early vitrification at neutral pH values where dissociation of galacturonic acid residues takes place. Time-temperature superposition of the mechanical shift factors and theoretical modeling utilizing WLF kinetics confirmed the accelerated kinetics of glass transition in the extended pectin conformation at neutral pH. Determination of the relaxation spectra of the samples using spectral analysis of the master curves revealed that the relaxation of macromolecules occurs within ∼ 0.1s regardless of the solvent pH.
Collapse
Affiliation(s)
- K Alba
- Department of Biological Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - S Kasapis
- School of Applied Sciences, RMIT University, City Campus, Melbourne 3001, VIC, Australia
| | - V Kontogiorgos
- Department of Biological Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK.
| |
Collapse
|
11
|
Davidovich-Pinhas M, Barbut S, Marangoni A. The gelation of oil using ethyl cellulose. Carbohydr Polym 2015; 117:869-878. [DOI: 10.1016/j.carbpol.2014.10.035] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
12
|
Altay F, Gunasekaran S. Mechanical spectra and calorimetric evaluation of gelatin–xanthan gum systems with high levels of co-solutes in the glassy state. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Aguirre-Álvarez G, Foster T, Hill S. Impact of the origin of gelatins on their intrinsic properties. CYTA - JOURNAL OF FOOD 2012. [DOI: 10.1080/19476337.2012.658441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Altay F, Gunasekaran S. Rheological evaluation of gelatin–xanthan gum system with high levels of co-solutes in the rubber-to-glass transition region. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Syamaladevi RM, Barbosa-Cánovas GV, Schmidt SJ, Sablani SS. Influence of molecular weight on enthalpy relaxation and fragility of amorphous carbohydrates. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Shrinivas P, Kasapis S. Unexpected Phase Behavior of Amylose in a High Solids Environment. Biomacromolecules 2010; 11:421-9. [DOI: 10.1021/bm9011562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Preeti Shrinivas
- Department of Chemistry, National University of Singapore, Block S8, Level 5, Science Drive 3, Singapore 117543, and School of Applied Sciences, RMIT University, City Campus, Melbourne, Vic 3001, Australia
| | - Stefan Kasapis
- Department of Chemistry, National University of Singapore, Block S8, Level 5, Science Drive 3, Singapore 117543, and School of Applied Sciences, RMIT University, City Campus, Melbourne, Vic 3001, Australia
| |
Collapse
|
17
|
|
18
|
Network formation in glycerol plasticized wheat gluten as viewed by extensional deformation and stress relaxation: Final conclusions. Food Hydrocoll 2008. [DOI: 10.1016/j.foodhyd.2007.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kasapis S. Recent advances and future challenges in the explanation and exploitation of the network glass transition of high sugar/biopolymer mixtures. Crit Rev Food Sci Nutr 2008; 48:185-203. [PMID: 18274972 DOI: 10.1080/10408390701286025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Through the years, the concept of glassy phenomena evolved from non-science to a highly specialized subject following the appreciation that structural properties or product defects could be rationalized on the basis of this amorphous vitreous transition. Special reference will be made in this review to sugar glasses in the presence of biopolymers which, increasingly, are used to innovate (e.g., replace gelatin) in confections, ice cream, boiled down sweets, etc. Keeping in mind that the subject cuts across several conventional fields, this manuscript is written with several objectives in view. I deemed it necessary to provide a historic itinerary of the nature of the rubber-to-glass transition in association with the concepts of plasticizing and unfreezable water. That should facilitate comprehension and hopefully encourage young scientists to take an interest in the field that continues to offer considerable challenges, as well as opportunities. Second, the food scientist is exposed to the "sophisticated" synthetic polymer approach pioneered by J.D. Ferry and his colleagues via the WLF equation/free volume theoretical framework. Extension of this school of thought to biomaterials introduces the concept of mechanical or network glass transition temperature, which is contrasted to data obtained using differential scanning calorimetry. Applications of the network T(g) as a relevant indicator for evaluating the stability criteria and the quality-control aspects of foodstuffs are also discussed. All along, information available in the literature is critically presented ranging from the misuse of the WLF equation to a recent challenge to the theory mounted by the coupling model, which addresses in some detail the physics of interactions and the cooperativity of molecular mobility at the vicinity of T(g).
Collapse
Affiliation(s)
- Stefan Kasapis
- Department of Chemistry, National University of Singapore, Singapore.
| |
Collapse
|
20
|
Kasapis S. Phase Separation in Biopolymer Gels: A Low- to High-Solid Exploration of Structural Morphology and Functionality. Crit Rev Food Sci Nutr 2008; 48:341-59. [DOI: 10.1080/10408390701347769] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Peng HT, Martineau L, Shek PN. Hydrogel-elastomer composite biomaterials: 3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:997-1007. [PMID: 17665128 DOI: 10.1007/s10856-007-0167-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/08/2007] [Indexed: 05/16/2023]
Abstract
To optimize the preparation of a gelatin-HydroThane Interpenetrating Polymer Network (IPN) and obtain optimum physical properties for its use as a wound dressing, we studied IPN films prepared with two types of gelatin having different molecular weights. The effects of the gelatin molecular weight and type on the IPN film's structure, morphology, swelling and mechanical properties were determined. While FTIR did not reveal any noticeable differences between the IPNs prepared using different gelatin, light microscopy showed a lesser phase separation of the film prepared with a high-molecular-weight type A gelatin. Furthermore, these films displayed slightly less swelling, higher strength and lower strain, compared to the IPNs prepared with either low-molecular-weight type A or type B gelatin. The IPN prepared with type B gelatin showed higher swelling in serum-containing medium than those prepared with type A gelatin, because of its ionic charges under the condition. Increases in viscosity were observed with increasing molecular weight, type A being more viscous than type B gelatin despite having a lower bloom number. The viscosity of the high-molecular-weight gelatin was in the same magnitude as that of HydroThane, which might lead to less phase separation. A better understanding of the effects of alterations in the gelatin molecular weight and type on the formation and properties of the gelatin-HydroThane IPN should facilitate the development of promising composite biomaterials for wound dressing applications.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada-Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, ON, Canada M3M 3B9.
| | | | | |
Collapse
|
22
|
Beyond the free volume theory: Introduction of the concept of cooperativity to the chain dynamics of biopolymers during vitrification. Food Hydrocoll 2008. [DOI: 10.1016/j.foodhyd.2007.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Kasapis S. The effect of pressure on the glass transition of biopolymer/co-solute. Int J Biol Macromol 2007; 40:491-7. [PMID: 17210174 DOI: 10.1016/j.ijbiomac.2006.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/18/2006] [Accepted: 11/19/2006] [Indexed: 11/16/2022]
Abstract
High-solid materials of gelatin in the presence of co-solute were prepared and subjected to a series of hydrostatic pressures up to 700 MPa. Following this, a study was made of the relaxation properties of the mixture around the glass transition region and the melting behaviour of the gelatin network. Structural properties were monitored using differential scanning calorimetry and small-deformation dynamic oscillation on shear. Thermograms were obtained and master curves of viscoelasticity were constructed for each experimental pressure. The dependence of the empirical shift distances obtained from mechanical measurements and supplementing evidence from thermal analysis argue that the application of pressure did not alter the vitrification or melting characteristics of the gelatin/co-solute system within the experimentally accessible pressure range. Unlike the principle of the time-temperature-pressure superposition applicable to synthetic macromolecules, it may not be possible to incorporate a pressure component into the framework of thermorheological simplicity governing the glass transition of the high-sugar gelatin network.
Collapse
Affiliation(s)
- Stefan Kasapis
- Department of Chemistry, National University of Singapore, Block S8, Level 5, Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
24
|
Kasapis S, Sablani SS, Rahman MS, Al-Marhoobi IM, Al-Amri IS. Porosity and the effect of structural changes on the mechanical glass transition temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2459-66. [PMID: 17316022 DOI: 10.1021/jf063473j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Continuing an investigation on the fundamentals and applications of a recently proposed concept, i.e., the mechanical or network glass transition temperature, we now report data on the macrostructural changes in dehydrated apple tissue in relation to apparent porosity. Care was taken to keep the moisture content of the matrix constant (approximately 81%) while the volume fraction of total pores ranged from 0.38 to 0.79. Reproducible mechanical profiles identified the first derivative of shear storage modulus as a function of temperature to be the appropriate indicator of the mechanical Tg at the conjunction of the William-Landel-Ferry/free volume theory and the modified Arrhenius equation. Information on the microstructural characteristics and morphology of porous apple preparations was also made available via modulated differential scanning calorimetry and scanning electron microscopy. The work reveals and discusses discrepancies in the Tg-porosity relationship obtained from calorimetry and mechanical analysis attributable to the different extent to which the two techniques respond to degrees of molecular mobility.
Collapse
Affiliation(s)
- Stefan Kasapis
- Department of Chemistry, National University of Singapore, Block S8, Level 5, Science Drive 3, Singapore 117543.
| | | | | | | | | |
Collapse
|
25
|
da Silva MA, Arêas EPG. Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics. J Colloid Interface Sci 2006; 289:394-401. [PMID: 15935361 DOI: 10.1016/j.jcis.2005.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 11/28/2022]
Abstract
In this work, the gelation kinetics and fractal character of lysozyme gel matrices developed in tetramethylurea (TMU)-water media were investigated. Gelation times were determined from the temporal crossover point between the storage, G', and loss, G'', moduli, as a function of the binary solvent composition and of protein concentration. The inverse dependence of the upper limit of the linear viscoelastic region (gamma0) on protein concentration indicate that the lysozyme gels belong to the "strong link" kind, a gel category where interparticle links are stronger than intraparticle ones. Lysozyme gel fractal dimensions (Df) were determined from the analysis of rheological data according to a scaling theory by Shih et al. [Phys. Rev. A 42 (1990) 4772-4779] and were found to be compatible with a diffusion-limited cluster-aggregation kinetics (DLCA) for lysozyme gels formed at the TMU mass fraction in the binary organic-aqueous solvent, wTMU=0.9, and with a reaction-limited cluster aggregation kinetics (RLCA) for wTMU in the 0.6< or =wTMU< or =0.8 range.
Collapse
Affiliation(s)
- Marcelo A da Silva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, CEP 05513-970 São Paulo, SP, Brazil
| | | |
Collapse
|
26
|
Kasapis S. Building on the WLF/Free Volume Framework: Utilization of the Coupling Model in the Relaxation Dynamics of the Gelatin/Cosolute System. Biomacromolecules 2006; 7:1671-8. [PMID: 16677053 DOI: 10.1021/bm060189s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The onset of softening in the glass transition dispersion of the gelatin/cosolute system at 78% solids was examined using the stress relaxation modulus and dynamic oscillatory data on shear. Measurements were made between 5 and -70 degrees C, and isothermal runs were reduced to a master curve covering 21 orders of magnitude in the time domain. The sharpness with which the mechanical properties of our system changed with temperature was reflected in the shift factor a(T) used to pinpoint the glass transition temperature (T(g)). The prevalent analytical framework traditionally employed to follow the transition from the rubbery to glasslike consistency in biomaterials is that of the free volume theory in conjunction with the WLF equation. Increasingly, the combined WLF/free volume approach is challenged by the coupling model, which is able to provide additional insights into the physics of intermolecular interactions in synthetic materials at the vicinity of T(g). The model in the form of the Kohlrausch-Williams-Watts function described well the spectral shape of the local segmental motions of gelatin/cosolute at T(g). The analysis provided the intermolecular interaction constant and apparent relaxation time, parameters which depend on chemical structure. Results appear to be encouraging for further explorations of the dynamics of densely packed biomaterials at the glass transition region.
Collapse
Affiliation(s)
- Stefan Kasapis
- Department of Chemistry, National University of Singapore, Block S3, Level 6, Science Drive 4, Singapore 117543.
| |
Collapse
|
27
|
|
28
|
Al-Marhoobi IM, Kasapis S. Further evidence of the changing nature of biopolymer networks in the presence of sugar. Carbohydr Res 2005; 340:771-4. [PMID: 15721352 DOI: 10.1016/j.carres.2004.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 12/03/2004] [Indexed: 11/23/2022]
Abstract
Despite claims made in the literature that polysaccharides maintain a substantially aggregated morphology in the form of "gel particulates" or "gel islands" at a high sugar environment, results of differential scanning calorimetry (DSC) discussed now demonstrate that extensive macromolecular order is not thermodynamically stable. Gelatin, on the other hand, appears to demix from the sugar-rich domains, which promote chain association rather than inhibiting it. DSC evidence is supported by previously published transmission electron microscopy (TEM) work and mechanical analysis.
Collapse
Affiliation(s)
- Insaf M Al-Marhoobi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Oman
| | | |
Collapse
|
29
|
Kasapis S, Al-Marhoobi IM. Bridging the Divide between the High- and Low-Solid Analyses in the Gelatin/κ-Carrageenan Mixture. Biomacromolecules 2004; 6:14-23. [PMID: 15638497 DOI: 10.1021/bm0400473] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the past few years, a considerable amount of work has been done in several laboratories on the measurement of structural properties of low-solid biopolymer mixtures or high-solid materials of a single biopolymer in the presence of co-solute. The main objective of this work has been to establish a correlation between the two types of systems and extend it to a binary mixture in a high-solid environment. In doing so, it employed well-characterized kappa-carrageenan and gelatin samples in an aqueous preparation or in the presence of glucose syrup and sucrose. The phase behavior of the composite gel was ascertained using small-deformation dynamic oscillation, differential scanning calorimetry, and light microscopy. Experimental observations were built into polymer blending laws that argued for an explicit phase topology and distribution of solvent between the two networks. A working hypothesis was formulated and applied to high-solid mixtures thus identifying phase or state transitions in the time/temperature function. This led to the development of a mechanical glass transition temperature as the threshold of two distinct molecular processes governing the "rubber-to-glass" transformation. A stage was reached at which the predictions of the hypothesis were found to be in good agreement with the experimental development of viscoelasticity in the high-solid kappa-carrageenan/gelatin mixture ranging from the rubbery plateau and the transition region to the glassy state.
Collapse
Affiliation(s)
- Stefan Kasapis
- Department of Food Science & Nutrition, College of Agricultural & Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Sultanate of Oman.
| | | |
Collapse
|
30
|
|