1
|
Rilievo G, Cencini A, Cecconello A, Currò S, Bortoletti M, Leszczyńska K, Górska S, Fasolato L, Tonolo F, de Almeida Roger J, Vianello F, Magro M. Interactions between prokaryotic polysaccharides and colloidal magnetic nanoparticles for bacteria removal: A strategy for circumventing antibiotic resistance. Int J Biol Macromol 2024; 274:133415. [PMID: 38925181 DOI: 10.1016/j.ijbiomac.2024.133415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Highly stable, colloidal iron oxide nanoparticles with an oxyhydroxide-like surface were used as bacteria-capturing nano-baits. Peptidoglycan isolated from Listeria spp was used as bacteria polysaccharide model, and the nanoparticle binding was characterized showing a Langmuir isotherm constant, KL, equal to 50 ± 3 mL mg-1. The chemical affinity was further supported by dynamic light scattering, transmission electron microscopy, and infrared and UV-Vis data, pointing at the occurrence of extended, coordinative multiple point bindings. The interaction with Gram (+) (Listeria spp) and Gram (-) (Aeromonas veronii) bacteria was shown to be effective and devoid of any toxic effect. Moreover, a real sample, containing a population of several oligotrophic bacteria strains, was incubated with 1 g L-1 of nanoparticle suspension, in the absence of agitation, showing a 100 % capture efficiency, according to plate count. A nanoparticle regeneration method was developed, despite the known irreversibility of such bacterial-nanosurface binding, restoring the bacteria capture capability. This nanomaterial represents a competitive option to eliminate microbiological contamination in water as an alternative strategy to antibiotics, aimed at reducing microbial resistance dissemination. Finally, beyond their excellent features in terms of colloidal stability, binding performances, and biocompatibility this nanoparticle synthesis is cost effective, scalable, and environmentally sustainable.
Collapse
Affiliation(s)
- Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy.
| | - Sarah Currò
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Katarzyna Leszczyńska
- Microbiome Immunobiology Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Poland
| | - Sabina Górska
- Microbiome Immunobiology Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Poland
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | | | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy.
| |
Collapse
|
2
|
Hofmaier M, Heger JE, Lentz S, Schwarz S, Müller-Buschbaum P, Scheibel T, Fery A, Müller M. Influence of the Sequence Motive Repeating Number on Protein Folding in Spider Silk Protein Films. Biomacromolecules 2023; 24:5707-5721. [PMID: 37934893 DOI: 10.1021/acs.biomac.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Like multiblock copolymers, spider silk proteins are built of repetitive sequence motives. One prominent repetitive motif is based on the consensus sequence of spidroin 4 of the spider Araneus diadematus ADF4. The number x of the repeating sequence motives (C) determines the molecular weight of the recombinant ADF4-based, engineered spider silk protein denoted as eADF4(Cx). eADF4(Cx) can be used as a model for intrinsically disordered proteins (IDP) and to elucidate their folding. Herein, the influence of the variation of the sequence motive repeating number x (x = 1, 2, 4, 8, 16) on the protein folding within eADF4(Cx) films was investigated. eADF4(Cx) films were cast from 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solutions onto planar silicon model substrates, revealing mainly helical or random coil structure. Upon treatment with methanol vapor (ptm), the formation of crystalline β-sheets was triggered. Dichroic Fourier-transform infrared (FTIR) spectroscopy, circular dichroism, spectroscopic ellipsometry, atomic force microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), and electrokinetic and contact angle measurements were used to get information concerning the secondary structure and folding kinetics, orientation of β-sheets, the ratio of parallel/antiparallel β-sheets, domain sizes and distributions, surface topography, surface potential, hydrophobicity and the film integrity under water. Significant differences in the final β-sheet content, the share of antiparallel β-sheet structures, film integrity, surface potential, and isoelectric points between eADF4(Cx) with x = 1, 2 and eADF4(Cx) with x = 4, 8, 16 gave new insights in the molecular weight-dependent structure formation and film properties of IDP systems. GISAXS and kinetic measurements confirmed a relation between β-sheet crystal growth rate and final β-sheet crystal size. Further, competing effects of reduced diffusibility hindering accelerated crystal growth and enhanced backfolding promoting accelerated crystal growth with increasing molecular weight were discussed.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Dresden 01069, Germany
| | - Julian E Heger
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, Garching 85748, Germany
| | - Sarah Lentz
- Functional Polymer Interfaces Group, University of Bayreuth, Bayreuth 95447, Germany
| | - Simona Schwarz
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Garching 85748, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Bayreuth 95447, Germany
- Bayreuth Center of Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth 95440, Germany
- Bayreuth Center for Molecular Bioscience (BZMB), University of Bayreuth, Bayreuth 95440, Germany
- Bayreuth Center for Material Science and Engineering (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth 95440, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Dresden 01069, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Dresden 01062, Germany
| |
Collapse
|
3
|
Meskers SCJ. The Exciton Model for Molecular Materials: Past, Present and Future? Chemphyschem 2023:e202300666. [PMID: 38010974 DOI: 10.1002/cphc.202300666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
In assemblies of identical molecules or chromophores, electronic excitations can be described as excitons, bound electron-hole pairs that can move from site to site as a pair in a coherent manner. The understanding of excitons is crucial when trying to engineer favorable photophysical properties through structuring organic molecular matter. In recent decades, limitations of the concept of an exciton have become clear. The exciton can hybridize with phonon and photons. To clarify these issues, the exciton is discussed within the broader context of the gauge properties of the electromagnetic force.
Collapse
Affiliation(s)
- Stefan C J Meskers
- Molecular Materials and Nanosystems Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven university of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Hofmaier M, Malanin M, Bittrich E, Lentz S, Urban B, Scheibel T, Fery A, Müller M. β-Sheet Structure Formation within Binary Blends of Two Spider Silk Related Peptides. Biomacromolecules 2023; 24:825-840. [PMID: 36632028 DOI: 10.1021/acs.biomac.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) play an important role in molecular biology and medicine because their induced folding can lead to so-called conformational diseases, where β-amyloids play an important role. Still, the molecular folding process into the different substructures, such as parallel/antiparallel or extended β-sheet/crossed β-sheet is not fully understood. The recombinant spider silk protein eADF4(Cx) consisting of repeating modules C, which are composed of a crystalline (pep-c) and an amorphous peptide sequence (pep-a), can be used as a model system for IDP since it can assemble into similar structures. In this work, blend films of the pep-c and pep-a sequences were investigated to modulate the β-sheet formation by varying the molar fraction of pep-c and pep-a. Dichroic Fourier-transform infrared spectroscopy (FTIR), circular dichroism, spectroscopic ellipsometry, atomic force microscopy, and IR nanospectroscopy were used to examine the secondary structure, the formation of parallel and antiparallel β-sheets, their orientation, and the microscopic roughness and phase formation within peptide blend films upon methanol post-treatment. New insights into the formation of filament-like structures in these silk blend films were obtained. Filament-like structures could be locally assigned to β-sheet-rich structures. Further, the antiparallel or parallel character and the orientation of the formed β-sheets could be clearly determined. Finally, the ideal ratio of pep-a and pep-c sequences found in the fibroin 4 of the major ampullate silk of spiders could also be rationalized by comparing the blend and spider silk protein systems.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Mikhail Malanin
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Eva Bittrich
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Sarah Lentz
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany
| | - Birgit Urban
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062Dresden, Germany
| |
Collapse
|
5
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Crosslinked Polypeptide Films via RAFT-Mediated Continuous Assembly of Polymers. Angew Chem Int Ed Engl 2022; 61:e202112842. [PMID: 34861079 PMCID: PMC9305155 DOI: 10.1002/anie.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Polypeptide coatings are a cornerstone in the field of surface modification due to their widespread biological potential. As their properties are dictated by their structural features, subsequent control thereof using unique fabrication strategies is important. Herein, we report a facile method of precisely creating densely crosslinked polypeptide films with unusually high random coil content through continuous assembly polymerization via reversible addition-fragmentation chain transfer (CAP-RAFT). CAP-RAFT was fundamentally investigated using methacrylated poly-l-lysine (PLLMA) and methacrylated poly-l-glutamic acid (PLGMA). Careful technique refinement resulted in films up to 36.1±1.1 nm thick which could be increased to 94.9±8.2 nm after using this strategy multiple times. PLLMA and PLGMA films were found to have 30-50 % random coil conformations. Degradation by enzymes present during wound healing reveals potential for applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Nicholas J. Chan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Sarah Lentz
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Paul A. Gurr
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Shereen Tan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| |
Collapse
|
6
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Vernetzte Polypeptide durch RAFT‐vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas J. Chan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Sarah Lentz
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Paul A. Gurr
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Shereen Tan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| |
Collapse
|
7
|
Ripanti F, Luchetti N, Nucara A, Minicozzi V, Venere AD, Filabozzi A, Carbonaro M. Normal mode calculation and infrared spectroscopy of proteins in water solution: Relationship between amide I transition dipole strength and secondary structure. Int J Biol Macromol 2021; 185:369-376. [PMID: 34157332 DOI: 10.1016/j.ijbiomac.2021.06.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
Dipole Strength (DS) of the amides has gained a renewed interest in chemical physics since it provides an important tool to disclose the on-site vibrational energy distributions. Apart from earlier experimental efforts on polypeptides, little is still known about DS in complex proteins. We accurately measured the Fourier Transform Infrared absorption spectra of nine proteins in water solution obtaining their Molar Extinction Coefficient in the amide I and II spectral region. Our results show that the amide I DS value depends on the protein secondary structure, being that of the α-rich and unstructured proteins lower by a factor of 2 than that of the β-rich proteins. The average DS for amino acids in α and β secondary structures confirms this finding. Normal Mode calculation and Molecular Dynamics were performed and used as tools for data analysis and interpretation. The present outcomes corroborate the hypothesis that antiparallel β-sheet environment is more prone to delocalize the on-site CO stretching vibration through coupling mechanisms between carbonyl groups, whereas α-helix structures are energetically less stable to permit vibrational mode delocalization.
Collapse
Affiliation(s)
- Francesca Ripanti
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Nicole Luchetti
- Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Nucara
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Filabozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
8
|
Hofmaier M, Urban B, Lentz S, Borkner CB, Scheibel T, Fery A, Müller M. Dichroic Fourier Transform Infrared Spectroscopy Characterization of the β-Sheet Orientation in Spider Silk Films on Silicon Substrates. J Phys Chem B 2021; 125:1061-1071. [PMID: 33433229 DOI: 10.1021/acs.jpcb.0c09395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orientation analysis of the β-sheet structure within films of the established recombinant spider silk protein eADF4(C16) was performed using a concept based on dichroic transmission- and attenuated total reflection-Fourier transform infrared spectroscopy, lineshape analysis, assignment of amide I components to specific vibration modes, and transition dipole moment directions of β-sheet structures. Based on the experimental dichroic ratio R, the order parameter S of β-sheet structures was calculated with respect to uniaxial orientation. Films of eADF4(C16) were deposited on untexturized (Si) and unidirectionally scratched silicon substrates (Si-sc) and post-treated with MeOH vapor. Freshly cast thin and thick eADF4(C16) films out of hexafluoroisopropanol featured β-sheet contents of ≈6%, which increased to >30% after MeOH post-treatment in dependence of time. Pseudo-first order folding kinetics were obtained, suggesting a transition from an unfolded to a folded state. In MeOH post-treated thin films with diameters in the nanometer range, a significant orientation of β-sheets was obtained regardless of the texturization of the silicon substrate (Si, Si-sc). This was rationalized by dichroic ratios of the amide I component at 1696 cm-1 assigned to the (0, π) mode of antiparallel β-sheet structures, whose transition dipole moment M is located in parallel to both β-sheet plane and chain direction. The calculated high molecular order parameter S ≈ 0.40 suggested vertically (out-of-plane) oriented antiparallel β-sheet stacks with tilt angles of γ ≈ 39° to the surface normal. Microscale (thick) films, in contrast, revealed low order parameters S ≈ 0. Scanning force microscopy on thin eADF4 films at silicon substrates showed dewetted polymer film structures rather at the micro-scale. These findings give new insights in the role of the β-sheet crystallite orientation for the mechanical properties of spider silk materials.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069 Dresden, Germany.,Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062 Dresden, Germany
| | - Birgit Urban
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069 Dresden, Germany
| | - Sarah Lentz
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447 Bayreuth, Germany
| | - Christian B Borkner
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447 Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447 Bayreuth, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069 Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069 Dresden, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069 Dresden, Germany.,Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062 Dresden, Germany
| |
Collapse
|
9
|
Wang C, Xu L, Qiao Y, Qiu D. Adhesives to empower a manipulator inspired by the chameleon tongue. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Oliver D, Michaelis M, Heinz H, Volkov VV, Perry CC. From phage display to structure: an interplay of enthalpy and entropy in the binding of the LDHSLHS polypeptide to silica. Phys Chem Chem Phys 2019; 21:4663-4672. [PMID: 30747204 DOI: 10.1039/c8cp07011c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polypeptide based biosilica composites show promise as next generation multi-functional nano-platforms for diagnostics and bio-catalytic applications. Following the identification of a strong silica binder (LDHSLHS) by phage display, we conduct structural analysis of the polypeptide at the interface with amorphous silica nanoparticles in an aqueous environment. Our approach relies on modelling infrared and Raman spectral responses using predictions of molecular dynamics simulations and quantum studies of the normal modes for several potential structures. By simultaneously fitting both infrared and Raman responses in the amide spectral region, we show that the main structural conformer has a beta-like central region and helix-twisted terminals. Classical simulations, as conducted previously (Chem. Mater., 2014, 26, 5725), predict that the association of the main structure with the interface is stimulated by electrostatic interactions though surface binding also requires spatially distributed sodium ions to compensate for negatively charged acidic silanol groups. Accordingly, diffusion of sodium ions would contribute to a stochastic character of the peptide association with the surface. Consistent with the described dynamics at the interface, the results obtained from isothermal titration calorimetry (ITC) confirm a significant enhancement of polypeptide binding to silica at higher concentrations of Na+. The results of this study suggest that the tertiary structure of a phage capsid protein plays a significant role in regulating the conformation of peptide LDHSLHS, increasing its binding to silica during the phage display process. The results presented here support design-led engineering of polypeptide-silica nanocomposites for bio-technological applications.
Collapse
Affiliation(s)
- Daniel Oliver
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | | | | | | | | |
Collapse
|
11
|
Baronio CM, Baldassarre M, Barth A. Insight into the internal structure of amyloid-β oligomers by isotope-edited Fourier transform infrared spectroscopy. Phys Chem Chem Phys 2019; 21:8587-8597. [DOI: 10.1039/c9cp00717b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isotope-edited infrared spectroscopy reveals the structural unit of amyloid-β oligomers.
Collapse
Affiliation(s)
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics
- Stockholm University
- Sweden
| |
Collapse
|
12
|
Avadanei M. Photografted polymeric networks based on N
-isopropylacrylamide: Depth profiling by infrared spectroscopy. J Appl Polym Sci 2018. [DOI: 10.1002/app.46048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihaela Avadanei
- “P.Poni” Institute of Macromolecular Chemistry; 41A Gr. Ghica Voda Alley 700487 Iasi, Romania
| |
Collapse
|
13
|
Torii H, Kawanaka M. Secondary Structure Dependence and Hydration Effect of the Infrared Intensity of the Amide II Mode of Peptide Chains. J Phys Chem B 2015; 120:1624-34. [DOI: 10.1021/acs.jpcb.5b08258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hajime Torii
- Department
of Chemistry, Faculty of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- Department
of Optoelectronics and Nanostructure Science, Graduate School of Science
and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Megumi Kawanaka
- Department
of Chemistry, Faculty of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
14
|
Affiliation(s)
- Juan Zhao
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
15
|
Murvai Ü, Somkuti J, Smeller L, Penke B, Kellermayer MSZ. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:327-32. [PMID: 25600136 DOI: 10.1016/j.bbapap.2015.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/28/2014] [Accepted: 01/11/2015] [Indexed: 11/30/2022]
Abstract
Aβ25-35, the fibril-forming, biologically active toxic fragment of the full-length amyloid β-peptide also forms fibrils on mica by an epitaxial assembly mechanism. Here we investigated, by using atomic force microscopy, nanomechanical manipulation and FTIR spectroscopy, whether the epitaxially grown fibrils display structural and mechanical features similar to the ones evolving under equilibrium conditions in bulk solution. Unlike epitaxially grown fibrils, solution-grown fibrils displayed a heterogeneous morphology and an apparently helical structure. While fibril assembly in solution occurred on a time scale of hours, it appeared within a few minutes on mica surface fibrils. Both types of fibrils showed a similar plateau-like nanomechanical response characterized by the appearance of force staircases. The IR spectra of both fibril types contained an intense peak between 1620 and 1640 cm(-1), indicating that β-sheets dominate their structure. A shift in the amide I band towards greater wave numbers in epitaxially assembled fibrils suggests that their structure is less compact than that of solution-grown fibrils. Thus, equilibrium conditions are required for a full structural compaction. Epitaxial Aβ25-35 fibril assembly, while significantly accelerated, may trap the fibrils in less compact configurations. Considering that under in vivo conditions the assembly of amyloid fibrils is influenced by the presence of extracellular matrix components, the ultimate fibril structure is likely to be influenced by the features of underlying matrix elements.
Collapse
Affiliation(s)
- Ünige Murvai
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary
| | - Botond Penke
- Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Dóm tér 8, Szeged, H-6720,Hungary
| | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest, Szeged, Dóm tér 81094 Hungary.
| |
Collapse
|
16
|
|
17
|
Das S, Pati F, Chameettachal S, Pahwa S, Ray AR, Dhara S, Ghosh S. Enhanced Redifferentiation of Chondrocytes on Microperiodic Silk/Gelatin Scaffolds: Toward Tailor-Made Tissue Engineering. Biomacromolecules 2013; 14:311-21. [DOI: 10.1021/bm301193t] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sanskrita Das
- Department
of Textile Technology, Indian Institute of Technology, New Delhi, India
- Centre
for Biomedical Engineering, Indian Institute of Technology and All India Institute of Medical Sciences, New Delhi, India
| | - Falguni Pati
- Department
of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Shibu Chameettachal
- Department
of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Shikha Pahwa
- Department
of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Alok R. Ray
- Centre
for Biomedical Engineering, Indian Institute of Technology and All India Institute of Medical Sciences, New Delhi, India
| | - Santanu Dhara
- School of Medical Science and
Technology, Indian Institute of Technology, Kharagpur, India
| | - Sourabh Ghosh
- Department
of Textile Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
18
|
Mandal P, Eremina N, Barth A. Formation of Two Different Types of Oligomers in the Early Phase of pH-Induced Aggregation of the Alzheimer Aβ(12-28) Peptide. J Phys Chem B 2012; 116:12389-97. [DOI: 10.1021/jp305015g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Paulami Mandal
- Stockholm University, Department
of Biochemistry and Biophysics, Arrhenius Laboratories, 10691 Stockholm,
Sweden
| | - Nadejda Eremina
- Stockholm University, Department
of Biochemistry and Biophysics, Arrhenius Laboratories, 10691 Stockholm,
Sweden
| | - Andreas Barth
- Stockholm University, Department
of Biochemistry and Biophysics, Arrhenius Laboratories, 10691 Stockholm,
Sweden
| |
Collapse
|
19
|
Han C, Wang J. Influence of an Unnatural Amino Acid Side Chain on the Conformational Dynamics of Peptides. Chemphyschem 2012; 13:1522-34. [DOI: 10.1002/cphc.201100995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 11/09/2022]
|
20
|
Santangelo MG, Noto R, Levantino M, Cupane A, Ricagno S, Pezzullo M, Bolognesi M, Mangione MR, Martorana V, Manno M. On the molecular structure of human neuroserpin polymers. Proteins 2012; 80:8-13. [PMID: 22072549 DOI: 10.1002/prot.23197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/04/2011] [Accepted: 09/14/2011] [Indexed: 11/12/2022]
Abstract
The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. In this work, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. First, we show that two distinct neuroserpin polymers, formed at 45 and 85°C, display the same isosbestic points in the Amide I' band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45°C suggesting that the polymerization rate-limiting step is the formation of an activated monomeric species. The polymer structures are consistent with a model that predicts the bare insertion of portions of the reactive center loop into the A β-sheet of neighboring serpin molecule, although with different extents at 45 and 85°C.
Collapse
|
21
|
Wu L, McElheny D, Setnicka V, Hilario J, Keiderling TA. Role of different β-turns in β-hairpin conformation and stability studied by optical spectroscopy. Proteins 2011; 80:44-60. [DOI: 10.1002/prot.23140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/28/2011] [Accepted: 07/21/2011] [Indexed: 12/28/2022]
|
22
|
Santiveri CM, Jiménez MA. Tryptophan residues: scarce in proteins but strong stabilizers of β-hairpin peptides. Biopolymers 2011; 94:779-90. [PMID: 20564027 DOI: 10.1002/bip.21436] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tryptophan plays important roles in protein stability and recognition despite its scarcity in proteins. Except as fluorescent groups, they have been used rarely in peptide design. Nevertheless, Trp residues were crucial for the stability of some designed minimal proteins. In 2000, Trp-Trp pairs were shown to contribute more than any other hydrophobic interaction to the stability of β-hairpin peptides. Since then, Trp-Trp pairs have emerged as a paradigm for the design of stable β-hairpins, such as the Trpzip peptides. Here, we analyze the nature of the stabilizing capacity of Trp-Trp pairs by reviewing the β-hairpin peptides containing Trp-Trp pairs described up to now, the spectroscopic features and geometry of the Trp-Trp pairs, and their use as binding sites in β-hairpin peptides. To complete the overview, we briefly go through the other relevant β-hairpin stabilizing Trp-non-Trp interactions and illustrate the use of Trp in the design of short peptides adopting α-helical and mixed α/β motifs. This review is of interest in the field of rational design of proteins, peptides, peptidomimetics, and biomaterials.
Collapse
Affiliation(s)
- Clara M Santiveri
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain
| | | |
Collapse
|
23
|
Formation of β-sheets in glutamine and alanine tripeptides. Biochem Biophys Res Commun 2011; 406:348-52. [DOI: 10.1016/j.bbrc.2011.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 11/20/2022]
|
24
|
Liu G, Prabhakar A, Aucoin D, Simon M, Sparks S, Robbins KJ, Sheen A, Petty SA, Lazo ND. Mechanistic studies of peptide self-assembly: transient α-helices to stable β-sheets. J Am Chem Soc 2010; 132:18223-32. [PMID: 21138275 DOI: 10.1021/ja1069882] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathologic self-assembly of proteins is associated with typically late-onset disorders such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. Important mechanistic details of the self-assembly are unknown, but there is increasing evidence supporting the role of transient α-helices in the early events. Islet amyloid polypeptide (IAPP) is a 37-residue polypeptide that self-assembles into aggregates that are toxic to the insulin-producing β cells. To elucidate early events in the self-assembly of IAPP, we used limited proteolysis to identify an exposed and flexible region in IAPP monomer. This region includes position 20 where a serine-to-glycine substitution (S20G) is associated with enhanced formation of amyloid fibrils and early onset type 2 diabetes. To perform detailed biophysical studies of the exposed and flexible region, we synthesized three peptides including IAPP(11-25)WT (wild type), IAPP(11-25)S20G, and IAPP(11-25)S20P. Solution-state NMR shows that all three peptides transiently populate the α-helical conformational space, but the S20P peptide, which does not self-assemble, transiently samples a broken helix. Under similar sample conditions, the WT and S20G peptides populate the α-helical intermediate state and β-sheet end state, respectively, of fibril formation. Our results suggest a mechanism for self-assembly that includes the stabilization of transient α-helices through the formation of NMR-invisible helical intermediates followed by an α-helix to β-sheet conformational rearrangement. Furthermore, our results suggest that reducing intermolecular helix-helix contacts as in the S20P peptide is an attractive strategy for the design of blockers of peptide self-assembly.
Collapse
Affiliation(s)
- Gai Liu
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rastogi R, Anand S, Dinda AK, Koul V. Investigation on the synergistic effect of a combination of chemical enhancers and modulated iontophoresis for transdermal delivery of insulin. Drug Dev Ind Pharm 2010; 36:993-1004. [PMID: 20334541 DOI: 10.3109/03639041003682012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The main objective of this study was to assess the flux enhancement of insulin transdermally by utilizing a complex of chemical enhancers in combination with modulated iontophoresis. METHODS The experiments were performed on porcine epidermis model under three different circumstances, namely, (a) 1-hour modulated iontophoresis alone; (b) pretreatment with vehicle and chemical enhancer combinations and (c) combination of (a) and (b). The mechanism of action of the enhancers was studied using infra-red spectra by derivative and curve-fitting techniques and Confocal laser scanning microscopy. The efficacy of the optimized combination was tested in vivo in streptozocin-diabetic Wistar rats. RESULTS A blend of 1,8 cineole, oleic acid and sodium deoxycholate in propylene glycol : ethanol (7:3) resulted in 45% enhancement, when permeation was performed in combination with iontophoresis as compared to the latter alone. In-depth analysis of infra-red spectra revealed that each of the enhancers acted differentially on lipid-protein domains of the stratum corneum thereby supporting the observed synergism. Movement of fluorescently labeled insulin depicted highlighted follicular regions and paracellular accumulation of the probe after iontophoresis and chemical enhancer treatment respectively. Presence of the fluorescent peptide in these regions 4 hour after treatment with the combination reinforced the results of the permeation studies. Finally the combination of modulated iontophoresis with chemical enhancer blend resulted in lowering of blood glucose for 8 hour in vivo. CONCLUSIONS The study proved the applicability of modulated iontophoresis with chemical pretreatment in delivering insulin transdermally.
Collapse
Affiliation(s)
- Rachna Rastogi
- Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | | | | | | |
Collapse
|
26
|
Breslauer DN, Muller SJ, Lee LP. Generation of Monodisperse Silk Microspheres Prepared with Microfluidics. Biomacromolecules 2010; 11:643-7. [DOI: 10.1021/bm901209u] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David N. Breslauer
- UCSF/UC Berkeley Bioengineering Graduate Group, Department of Bioengineering, and Department of Chemical Engineering, University of California, Berkeley, Berkeley, California 94720
| | - Susan J. Muller
- UCSF/UC Berkeley Bioengineering Graduate Group, Department of Bioengineering, and Department of Chemical Engineering, University of California, Berkeley, Berkeley, California 94720
| | - Luke P. Lee
- UCSF/UC Berkeley Bioengineering Graduate Group, Department of Bioengineering, and Department of Chemical Engineering, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
27
|
Wu L, McElheny D, Huang R, Keiderling TA. Role of Tryptophan−Tryptophan Interactions in Trpzip β-Hairpin Formation, Structure, and Stability. Biochemistry 2009; 48:10362-71. [PMID: 19788311 DOI: 10.1021/bi901249d] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling Wu
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| | - Rong Huang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| | - Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| |
Collapse
|
28
|
Lechauve C, Rezaei H, Celier C, Kiger L, Corral-Debrinski M, Noinville S, Chauvierre C, Hamdane D, Pato C, Marden MC. Neuroglobin and prion cellular localization: investigation of a potential interaction. J Mol Biol 2009; 388:968-77. [PMID: 19327369 DOI: 10.1016/j.jmb.2009.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/18/2009] [Accepted: 03/18/2009] [Indexed: 11/25/2022]
Abstract
Neuroglobin (Ngb) and the cellular prion protein (PrP(c)), proteins of unknown function in the nervous system, are known to be expressed in the retina and have been observed in different rat retinal cells. The retina is the site of the highest concentration for Ngb, a heme protein of similar size and conformation to myoglobin. In this study, we demonstrated by immunohistochemical analysis of retinal colocalization of Ngb and PrP(c) in the ganglion cell layer. Considering for these two a common protective role in relation to oxidative stress and a possible transient contact during migration of PrP(c) through the eye or upon neuronal degradation, we undertook in vitro studies of the interaction of the purified proteins. Mixing these two proteins leads to rapid aggregation, even at submicromolar concentrations. As observed with the use of dynamic light scattering, particles comprising both proteins evolve to hundreds of nanometers within several seconds, a first report showing that PrP(c) is able to form aggregates without major structural changes. The main effect would then appear to be a protein-protein interaction specific to the surface charge of the Ngb protein with PrP(c) N-terminal sequence. A dominant parameter is the solvent ionic force, which can significantly modify the final state of aggregation. PrP(c), normally anchored to the cell membrane, is toxic in the cytoplasm, where Ngb is present; this could suggest an Ngb function of scavenging proteins capable of forming deleterious aggregates considering a charge complementarity in the complex.
Collapse
Affiliation(s)
- Christophe Lechauve
- INSERM U779, Universités Paris VI et XI, Hopital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Minhaeng Cho
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea.
| |
Collapse
|
30
|
Barth A. Infrared spectroscopy of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1073-101. [PMID: 17692815 DOI: 10.1016/j.bbabio.2007.06.004] [Citation(s) in RCA: 2928] [Impact Index Per Article: 162.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 12/12/2022]
Abstract
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.
Collapse
Affiliation(s)
- Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
31
|
Barksdale AD, Rosenberg A. Acquisition and interpretation of hydrogen exchange data from peptides, polymers, and proteins. METHODS OF BIOCHEMICAL ANALYSIS 2006; 28:1-113. [PMID: 7048016 DOI: 10.1002/9780470110485.ch1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Wolpert M, Hellwig P. Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm(-1). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2006; 64:987-1001. [PMID: 16458063 DOI: 10.1016/j.saa.2005.08.025] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 08/15/2005] [Accepted: 08/31/2005] [Indexed: 05/06/2023]
Abstract
In this work, we present the absorption spectra and molar coefficients of all 20 amino acids in aqueous solutions down to 500 cm(-1). The spectral region between 1200 and 500 cm(-1) was yet disregarded for protein infrared spectroscopy, mainly due to the strong H(2)O absorption. Absorption spectra were obtained mainly for physiological relevant pH region. Intense bands for aromatic amino acids, histidine and such with OH group could clearly be identified throughout the given spectral region. For sulfur-containing amino acids cysteine and methionine some strong bands besides the weak carbon-sulfur stretching vibration was shown. Effects of aqueous solution environment, pH, protonation states were discussed, together with previously reported data from theoretical approaches. With this complete set of spectral information application to proteins in the whole mid infrared region could be described precise and the potential of the lower spectral region to study typical cofactor ligands like histidine, shown.
Collapse
Affiliation(s)
- Martina Wolpert
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt/Main, Germany
| | | |
Collapse
|
33
|
Pozo Ramajo A, Petty SA, Volk M. Fast folding dynamics of α-helical peptides – Effect of solvent additives and pH. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.08.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
|
35
|
Abramavicius D, Zhuang W, Mukamel S. Peptide Secondary Structure Determination by Three-Pulse Coherent Vibrational Spectroscopies: A Simulation Study. J Phys Chem B 2004. [DOI: 10.1021/jp047711u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darius Abramavicius
- Chemistry Department, University of California, Irvine, California 92697-2025
| | - Wei Zhuang
- Chemistry Department, University of California, Irvine, California 92697-2025
| | - Shaul Mukamel
- Chemistry Department, University of California, Irvine, California 92697-2025
| |
Collapse
|
36
|
Petty SA, Volk M. Fast folding dynamics of an α-helical peptide with bulky side chains. Phys Chem Chem Phys 2004. [DOI: 10.1039/b312348k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Gulotta M, Rogatsky E, Callender RH, Dyer RB. Primary folding dynamics of sperm whale apomyoglobin: core formation. Biophys J 2003; 84:1909-18. [PMID: 12609893 PMCID: PMC1302760 DOI: 10.1016/s0006-3495(03)74999-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The structure, thermodynamics, and kinetics of heat-induced unfolding of sperm whale apomyoglobin core formation have been studied. The most rudimentary core is formed at pH(*) 3.0 and up to 60 mM NaCl. Steady state for ultraviolet circular dichroism and fluorescence melting studies indicate that the core in this acid-destabilized state consists of a heterogeneous composition of structures of approximately 26 residues, two-thirds of the number involved for horse heart apomyoglobin under these conditions. Fluorescence temperature-jump relaxation studies show that there is only one process involved in Trp burial. This occurs in 20 micro s for a 7 degrees jump to 52 degrees C, which is close to the limits placed by diffusion on folding reactions. However, infrared temperature jump studies monitoring native helix burial are biexponential with times of 5 micro s and 56 micro s for a similar temperature jump. Both fluorescence and infrared fast phases are energetically favorable but the slow infrared absorbance phase is highly temperature-dependent, indicating a substantial enthalpic barrier for this process. The kinetics are best understood by a multiple-pathway kinetics model. The rapid phases likely represent direct burial of one or both of the Trp residues and parts of the G- and H-helices. We attribute the slow phase to burial and subsequent rearrangement of a misformed core or to a collapse having a high energy barrier wherein both Trps are solvent-exposed.
Collapse
Affiliation(s)
- Miriam Gulotta
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
38
|
Krushelnitsky A, Faizullin D, Reichert D. Hydration dependence of backbone and side chain polylysine dynamics: A13C solid-state NMR and IR spectroscopy study. Biopolymers 2003; 73:1-15. [PMID: 14691935 DOI: 10.1002/bip.10540] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed.
Collapse
|
39
|
Nilsson MR, Driscoll M, Raleigh DP. Low levels of asparagine deamidation can have a dramatic effect on aggregation of amyloidogenic peptides: implications for the study of amyloid formation. Protein Sci 2002; 11:342-9. [PMID: 11790844 PMCID: PMC2373442 DOI: 10.1110/ps.48702] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The polypeptide hormone amylin forms amyloid deposits in Type 2 diabetes mellitus and a 10-residue fragment of amylin (amylin(20-29)) is commonly used as a model system to study this process. Studies of amylin(20-29) and several variant peptides revealed that low levels of deamidation can have a significant effect on the secondary structure and aggregation behavior of these molecules. Results obtained with a variant of amylin(20-29), which has the primary sequence SNNFPAILSS, are highlighted. This peptide is particularly interesting from a technical standpoint. In the absence of impurities the peptide does not spontaneously aggregate and is not amyloidogenic. This peptide can spontaneously deamidate, and the presence of less than 5% of deamidation impurities leads to the formation of aggregates that have the hallmarks of amyloid. In addition, small amounts of deamidated material can induce amyloid formation by the purified peptide. These results have fundamental implications for the definition of an amyloidogenic sequence and for the standards of purity of peptides and proteins used for studies of amyloid formation.
Collapse
Affiliation(s)
- Melanie R Nilsson
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | | | |
Collapse
|
40
|
|
41
|
Venyaminov SY, Hedstrom JF, Prendergast FG. Analysis of the segmental stability of helical peptides by isotope-edited infrared spectroscopy. Proteins 2001; 45:81-9. [PMID: 11536363 DOI: 10.1002/prot.1126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Isotope-edited infrared spectroscopy has the ability to probe the segmental properties of long biopolymers. In this work, we have compared the infrared spectra of a model helical peptide ((12)C) Ac-W-(E-A-A-A-R)(6)-A-NH(2), described originally by Merutka et al. (Biochemistry 1991;30:4245-4248) and three derivatives that are (13)C labeled at the backbone carbonyl of alanines. The locations of six isotopically labeled alanines are at the N-terminal, C-terminal, and the middle two repeating units of the peptide. Variation in temperature from 1 degrees to 91 degrees C transformed the peptides from predominantly helical to predominantly disordered state. Amplitude and position of the infrared amide I' absorption bands from (12)C- and (13)C-labeled segments provided information about the helical content. Temperature dependence of infrared spectra was used to estimate segmental stability. As a control measure of overall peptide stability and helicity (independent of labeling), the temperature dependence of circular dichroism spectra in the far-UV range at identical conditions (temperature and solvent) as infrared spectra was measured. The results indicate that the central quarter of the 32 amino acids helix has the maximal helicity and stability. The midpoint of the melting curve of the central quarter of the helix is 5.4 +/- 0.8 degrees C higher than that of the termini. The N-terminal third of the helix is more helical and is 2.0 +/- 1.4 degrees C more stable than the C-terminus.
Collapse
Affiliation(s)
- S Y Venyaminov
- Department of Biochemistry and Molecular Biology, Mayo Foundation Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
42
|
Simonetti M, Di Bello C. New Fourier transform infrared based computational method for peptide secondary structure determination. II. Application to study of peptide fragments reproducing processing site of ocytocin-neurophysin precursor. Biopolymers 2001; 62:109-21. [PMID: 11288059 DOI: 10.1002/bip.1003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new method for the quantitative determination of the percentage of intramolecular H-bonds, based on Fourier transform infrared techniques, is applied to the conformational analysis of a series of synthetic peptides spanning the processing site of the ocytocin and neurophysin precursor. Even though the method uses traditional tools such as Fourier self-deconvolution, the Nth derivative, and curve-fitting procedures for the analysis of the spectra, the assignment of the absorptions due to peptide groups participating into secondary structures is based on the direct observation and quantification of the isotopic effect induced on the groups participating in intramolecular H-bonds in the presence of organic solvents. This permits the quantification of the different populations of molecules containing intramolecular H-bonds involved in beta-turns and alpha-helices. The results are consistent with those previously obtained by NMR techniques in the same solvent systems.
Collapse
Affiliation(s)
- M Simonetti
- Department of Chemical Processes Engineering, University of Padova, Via Marzolo 9, 35131 Padua, Italy
| | | |
Collapse
|
43
|
Simonetti M, Di Bello C. New Fourier transform infrared based computational method for peptide secondary structure determination. I. Description of method. Biopolymers 2001; 62:95-108. [PMID: 11288058 DOI: 10.1002/bip.1002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fourier transform infrared (FTIR) experiments in dimethylsulfoxide, a solvent incapable of H donation, demonstrate that H --> D isotopic replacement on the amide side of peptide bonds involves modifications of both the position and intensity of the amide I band. The effect of the isotopic substitution is particularly significant in the 1710-1670 and 1670-1650 cm(-1) regions, which are generally associated with beta-turns and alpha-helices. This behavior, attributed to the existence of intramolecular H-bonds in the polypeptide chain, is directly correlated to the presence of different secondary structures. Utilizing the effects induced by isotopic substitution, a method for the quantitative determination of the percentage of intramolecular H-bonds and the correlated secondary structures is proposed. The method consists of three principal steps: resolution of the fine structure of the amide I band with the determination of the number and position of the different components; reconstruction of the experimentally measured amide I band as a combination of Gaussian and Lorentzian functions, centered on the wave numbers set by band-narrowing methods, through a curve-fitting program; and quantitative determination of the population of the H-bonded carbonyls and the correlated secondary structures by comparison of the integrated intensities pertaining to the components with homologous wave numbers before and after isotopic exchange. The method is tested on a synthetic fragment of proocytocin that was previously analyzed by NMR techniques using the same solvent systems.
Collapse
Affiliation(s)
- M Simonetti
- Department of Chemical Processes Engineering, University of Padova, Via Marzolo 9, 35131 Padua, Italy
| | | |
Collapse
|
44
|
Vedantham G, Sparks HG, Sane SU, Tzannis S, Przybycien TM. A holistic approach for protein secondary structure estimation from infrared spectra in H(2)O solutions. Anal Biochem 2000; 285:33-49. [PMID: 10998261 DOI: 10.1006/abio.2000.4744] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present an improved technique for estimating protein secondary structure content from amide I and amide III band infrared spectra. This technique combines the superposition of reference spectra of pure secondary structure elements with simultaneous aromatic side chain, water vapor, and solvent background subtraction. Previous attempts to generate structural reference spectra from a basis set of reference protein spectra have had limited success because of inaccuracies arising from sequential background subtractions and spectral normalization, arbitrary spectral band truncation, and attempted resolution of spectroscopically degenerate structure classes. We eliminated these inaccuracies by defining a single mathematical function for protein spectra, permitting all subtractions, normalizations, and amide band deconvolution steps to be performed simultaneously using a single optimization algorithm. This approach circumvents many of the problems associated with the sequential nature of previous methods, especially with regard to removing the subjectivity involved in each processing step. A key element of this technique was the calculation of reference spectra for ordered helix, unordered helix, sheet, turns, and unordered structures from a basis set of spectra of well-characterized proteins. Structural reference spectra were generated in the amide I and amide III bands, both of which have been shown to be sensitive to protein secondary structure content. We accurately account for overlaps between amide and nonamide regions and allow different structure types to have different extinction coefficients. The agreement between our structure estimates, for proteins both inside and outside the basis set, and the corresponding determinations from X-ray crystallography is good.
Collapse
Affiliation(s)
- G Vedantham
- Applied Biophysics Laboratory, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
45
|
Binder H, Arnold K, Ulrich AS, Zschörnig O. The effect of Zn(2+) on the secondary structure of a histidine-rich fusogenic peptide and its interaction with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:345-58. [PMID: 11018678 DOI: 10.1016/s0005-2736(00)00275-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane fusion between uncharged lipid vesicles can be triggered by the peptide sequence 'B18' from the fertilization protein 'bindin', but it only proceeds efficiently in the presence of Zn(2+) ions. We studied (i) the interaction of Zn(2+) with the fusogenic peptide B18, (ii) the binding of B18 to 1-palmitoyl-2-oleoylglycero-3-phosphocholine (POPC), and (iii) the ternary system POPC/B18/Zn(2+). The complex formation of Zn(2+) with the central histidine-rich motif of B18 appears to shift the secondary structure away from a beta-sheet towards an alpha-helical conformation. Here we observe for the first time an essentially alpha-helical structure of the peptide when immersed in POPC bilayers which appears to represent its functional fusogenic state. Infrared linear dichroism suggests a peripheral, oblique insertion mode of B18, mediated by the hydrophobic patches along one side of the amphipathic peptide. Furthermore, the hydration level of the peptide is reduced, suggesting that the hydrophobic region of the bilayer is involved in the lipid/peptide interactions. The hydration capacity of the POPC/B18/Zn(2+) system is distinctly smaller than that of POPC/Zn(2+) without peptide. The accompanying decrease in the number of tightly bound water molecules per lipid can be interpreted as a reduction in the repulsive 'hydration' forces, which usually prevent the spontaneous fusion of lipid vesicles. Binding of the B18 peptide in the presence of Zn(2+) effectively renders the membrane surface more hydrophobic, thus allowing fusion to proceed.
Collapse
Affiliation(s)
- H Binder
- University of Leipzig, Institute of Medical Physics, Liebigstr, 27, D-04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
46
|
Nilsson MR, Raleigh DP. Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. J Mol Biol 1999; 294:1375-85. [PMID: 10600392 DOI: 10.1006/jmbi.1999.3286] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human amylin is the primary component of amyloid deposits found in the pancreatic beta-cells of patients with type 2 diabetes mellitus. Recently, two fragments of amylin have been identified in vivo. One fragment contains residues 17 to 37 of human amylin (AMYLIN17-37) and the other contains residues 24 to 37 (AMYLIN24-37). The secondary structure and amyloid forming ability of each peptide was determined at pH 5.5(+/-0.3) and pH 7.4(+/-0.3). Results at these two values of pH were very similar. Both peptides are predominantly unstructured in solution (CD) but adopt a significant amount of beta-sheet secondary structure upon aggregation (FTIR). Transmission electron microscopy (TEM) confirmed the presence of amyloid fibrils. AMYLIN24-37 was further dissected by studying peptides corresponding to residues 24 to 29 and 30 to 37. The AMYLIN30-37 peptide forms amyloid deposits. Samples of the 24 to 29 fragment which had TFA as the associated counterion formed ordered deposits but samples associated with HCl did not. Residues 20 to 29 are traditionally thought to be the amyloidogenic region of amylin, but this study demonstrates that peptides derived from other regions of amylin are capable of forming amyloid, and hence indicates that these regions of amylin can play a role in amyloid formation.
Collapse
Affiliation(s)
- M R Nilsson
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
47
|
Abstract
Polarized attenuated total reflection infrared spectroscopy of aligned membranes provides essential information on the secondary structure content and orientation of the associated membrane proteins. Quantitation of the relative content of different secondary structures, however, requires allowance for geometric relations of the electric field components (E(x), E(y), E(z)) of the evanescent wave, and of the components of the infrared transition moments, in combining absorbances (A and A(perpendicular)) measured with radiation polarized parallel with and perpendicular to, respectively, the plane of incidence. This has hitherto not been done. The appropriate combination for exact evaluation of relative integrated absorbances is A + (2E(z)(2)/E(y)(2) - E(x)(2)/E(y)(2))A(perpendicular), where z is the axis of ordering that is normal to the membrane plane, and the x-axis lies in the membrane plane within the plane of incidence. This combination can take values in the range approximately from A - 0.4A(perpendicular) to A + 2.7A(perpendicular), depending on experimental conditions and the attenuated total reflection crystal used. With unpolarized radiation, this correction is not possible. Similar considerations apply to the dichroic ratios of multicomponent bands, which are also treated.
Collapse
Affiliation(s)
- D Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, D-37070 Göttingen, Germany.
| |
Collapse
|
48
|
Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 1999. [PMID: 10417311 DOI: 10.1042/0264-6021: 3410501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The antimicrobial peptide LL-37 belongs to the cathelicidin family and is the first amphipathic alpha-helical peptide isolated from human. LL-37 is considered to play an important role in the first line of defence against local infection and systemic invasion of pathogens at sites of inflammation and wounds. Understanding its mode of action may assist in the development of antimicrobial agents mimicking those of the human immune system. In vitro studies revealed that LL-37 is cytotoxic to both bacterial and normal eukaryotic cells. To gain insight into the mechanism of its non-cell-selective cytotoxicity, we synthesized and structurally and functionally characterized LL-37, its N-terminal truncated form FF-33, and their fluorescent derivatives (which retained structure and activity). The results showed several differences, between LL-37 and other native antimicrobial peptides, that may shed light on its in vivo activities. Most interestingly, LL-37 exists in equilibrium between monomers and oligomers in solution at very low concentrations. Also, it is significantly resistant to proteolytic degradation in solution, and when bound to both zwitterionic (mimicking mammalian membranes) and negatively charged membranes (mimicking bacterial membranes). The results also showed a role for the N-terminus in proteolytic resistance and haemolytic activity, but not in antimicrobial activity. The LL-37 mode of action with negatively charged membranes suggests a detergent-like effect via a 'carpet-like' mechanism. However, the ability of LL-37 to oligomerize in zwitterionic membranes might suggest the formation of a transmembrane pore in normal eukaryotic cells. To examine this possibility we used polarized attenuated total reflectance Fourier-transform infrared spectroscopy and found that the peptide is predominantly alpha-helical and oriented nearly parallel with the surface of zwitterionic-lipid membranes. This result does not support the channel-forming hypothesis, but rather it supports the detergent-like effect.
Collapse
|
49
|
FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1177(99)00030-2] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Meskers S, Ruysschaert JM, Goormaghtigh E. Hydrogen−Deuterium Exchange of Streptavidin and Its Complex with Biotin Studied by 2D-Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. J Am Chem Soc 1999. [DOI: 10.1021/ja984208k] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Meskers
- Contribution from the Laboratoire de Chimie-Physique des Macromolécules aux Interfaces, CP 206/2, Université Libre de Bruxelles, Campus Plaine, B-1050 Brussels, Belgium, and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| | - Jean-Marie Ruysschaert
- Contribution from the Laboratoire de Chimie-Physique des Macromolécules aux Interfaces, CP 206/2, Université Libre de Bruxelles, Campus Plaine, B-1050 Brussels, Belgium, and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| | - Erik Goormaghtigh
- Contribution from the Laboratoire de Chimie-Physique des Macromolécules aux Interfaces, CP 206/2, Université Libre de Bruxelles, Campus Plaine, B-1050 Brussels, Belgium, and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| |
Collapse
|