1
|
Tang X, Zou Q, Yan Y, He F, Cui Y, Lian Y, Zhangsun D, Wu Y, Luo S. Integrative transcriptome and mass spectrometry analysis reveals novel cyclotides with antimicrobial and cytotoxic activities from Viola arcuata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109300. [PMID: 39608337 DOI: 10.1016/j.plaphy.2024.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Xue Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Qiongyan Zou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yujiao Yan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Fawei He
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yunfei Cui
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yuanyuan Lian
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Yong Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China.
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
2
|
Chung CR, Chien CY, Tang Y, Wu LC, Hsu JBK, Lu JJ, Lee TY, Bai C, Horng JT. An ensemble deep learning model for predicting minimum inhibitory concentrations of antimicrobial peptides against pathogenic bacteria. iScience 2024; 27:110718. [PMID: 39262770 PMCID: PMC11388163 DOI: 10.1016/j.isci.2024.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
The rise of antibiotic resistance necessitates effective alternative therapies. Antimicrobial peptides (AMPs) are promising due to their broad inhibitory effects. This study focuses on predicting the minimum inhibitory concentration (MIC) of AMPs against whom-priority pathogens: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. We developed a comprehensive regression model integrating AMP sequence-based and genomic features. Using eight AI-based architectures, including deep learning with protein language model embeddings, we created an ensemble model combining bi-directional long short-term memory (BiLSTM), convolutional neural network (CNN), and multi-branch model (MBM). The ensemble model showed superior performance with Pearson correlation coefficients of 0.756, 0.781, and 0.802 for the bacterial strains, demonstrating its accuracy in predicting MIC values. This work sets a foundation for future studies to enhance model performance and advance AMP applications in combating antibiotic resistance.
Collapse
Affiliation(s)
- Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Chung-Yu Chien
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Yun Tang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Justin Bo-Kai Hsu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Biodevices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| |
Collapse
|
3
|
Swain N, Sharma S, Maitra R, Saxena D, Kautu A, Singh R, Kesharwani K, Chopra S, Joshi KB. Antimicrobial peptide mimetic minimalistic approach leads to very short peptide amphiphiles-gold nanostructures for potent antibacterial activity. ChemMedChem 2024; 19:e202300576. [PMID: 38301146 DOI: 10.1002/cmdc.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Strategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria. This controlled approach not only yields diverse nanostructures but also holds promise for applications in antibacterial therapeutics.
Collapse
Affiliation(s)
- Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Rahul Maitra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
- Current address: Colorado State University USA
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
4
|
Chen Z, Wang L, He D, Liu Q, Han Q, Zhang J, Zhang AM, Song Y. Exploration of the Antibacterial and Anti-Inflammatory Activity of a Novel Antimicrobial Peptide Brevinin-1BW. Molecules 2024; 29:1534. [PMID: 38611812 PMCID: PMC11013252 DOI: 10.3390/molecules29071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotic resistance has emerged as a grave threat to global public health, leading to an increasing number of treatment failures. Antimicrobial peptides (AMPs) are widely regarded as potential substitutes for traditional antibiotics since they are less likely to induce resistance when used. A novel AMP named Brevinin-1BW (FLPLLAGLAASFLPTIFCKISRKC) was obtained by the Research Center of Molecular Medicine of Yunnan Province from the skin of the Pelophylax nigromaculatus. Brevinia-1BW had effective inhibitory effects on Gram-positive bacteria, with a minimum inhibitory concentration (MIC) of 3.125 μg/mL against Enterococcus faecalis (ATCC 29212) and 6.25 μg/mL against both Staphylococcus aureus (ATCC 25923) and multidrug-resistant Staphylococcus aureus (ATCC 29213) but had weaker inhibitory effects on Gram-negative bacteria, with a MIC of ≥100 μg/mL. Studies using scanning electron microscopy (SEM) and flow cytometry have revealed that it exerts its antibacterial activity by disrupting bacterial membranes. Additionally, it possesses strong biofilm inhibitory and eradication activities as well as significant lipopolysaccharide (LPS)-binding activity. Furthermore, Brevinin-1BW has shown a significant anti-inflammatory effect in LPS-treated RAW264.7 cells. In conclusion, Brevinin-1BW is anticipated to be a promising clinical agent with potent anti-Gram-positive bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Zhizhi Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Lei Wang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Dongxia He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qi Liu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - A-Mei Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
- School of Medicine, Kunming University of Science and Technology, Kunming 650504, China
| |
Collapse
|
5
|
Satchanska G, Davidova S, Gergova A. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Antibiotics (Basel) 2024; 13:202. [PMID: 38534637 DOI: 10.3390/antibiotics13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are usually made up of fewer than 100 amino acid residues. They are found in many living organisms and are an important factor in those organisms' innate immune systems. AMPs can be extracted from various living sources, including bacteria, plants, animals, and even humans. They are usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. They can act against both Gram-negative and Gram-positive pathogens and have various modes of action against them. Some attack the pathogens' membranes, while others target their intracellular organelles, as well as their nucleic acids, proteins, and metabolic pathways. A crucial area of AMP use is related to their ability to help with emerging antibiotic resistance: some AMPs are active against resistant strains and are susceptible to peptide engineering. This review considers AMPs from three key sources-plants, animals, and humans-as well as their modes of action and some AMP sequences.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Slavena Davidova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Alexandra Gergova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| |
Collapse
|
6
|
Gasanov V, Vorotelyak E, Vasiliev A. Expression of the Antimicrobial Peptide SE-33-A2P, a Modified Analog of Cathelicidin, and an Analysis of Its Properties. Antibiotics (Basel) 2024; 13:190. [PMID: 38391576 PMCID: PMC10886013 DOI: 10.3390/antibiotics13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we developed a method for the expression of the antimicrobial peptide SE-33-A2P in E. coli bacterial cells. The SE-33-A2P peptide consists of A2P and SE-33 peptides and is a retro analog of cathelicidin possessing antimicrobial activity against both Gram-positive and Gram-negative bacteria. Furthermore, the A2P peptide is a self-cleaving peptide. For an efficient expression of the SE-33-A2P peptide, a gene encoding several repetitive sequences of the SE-33 peptide separated by A2P sequences was created. The gene was cloned into a plasmid, with which E. coli cells were transformed. An induction of the product expression was carried out by IPTG after the cell culture gained high density. The inducible expression product, due to the properties of the A2P peptide, was cleaved in the cell into SE-33-A2P peptides. As the next step, the SE-33-A2P peptide was purified using filtration and chromatography. Its activity against both Gram-positive and Gram-negative bacteria, including antibiotic-resistant bacteria, was proved. The developed approach for obtaining a prokaryotic system for the expression of a highly active antimicrobial peptide expands the opportunities for producing antimicrobial peptides via industrial methods.
Collapse
Affiliation(s)
- Vagif Gasanov
- Laboratory of Cell Biology, N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov Str. 26, 119334 Moscow, Russia
| | - Ekaterina Vorotelyak
- Laboratory of Cell Biology, N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov Str. 26, 119334 Moscow, Russia
| | - Andrey Vasiliev
- Laboratory of Cell Biology, N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov Str. 26, 119334 Moscow, Russia
| |
Collapse
|
7
|
Goki NH, Tehranizadeh ZA, Saberi MR, Khameneh B, Bazzaz BSF. Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides. Curr Pharm Biotechnol 2024; 25:1041-1057. [PMID: 37921126 DOI: 10.2174/0113892010194428231017051836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 11/04/2023]
Abstract
Antimicrobial peptides (AMPs), a class of antimicrobial agents, possess considerable potential to treat various microbial ailments. The broad range of activity and rare complete bacterial resistance to AMPs make them ideal candidates for commercial development. These peptides with widely varying compositions and sources share recurrent structural and functional features in mechanisms of action. Studying the mechanisms of AMP activity against bacteria may lead to the development of new antimicrobial agents that are more potent. Generally, AMPs are effective against bacteria by forming pores or disrupting membrane barriers. The important structural aspects of cytoplasmic membranes of pathogens and host cells will also be outlined to understand the selective antimicrobial actions. The antimicrobial activities of AMPs are related to multiple physicochemical properties, such as length, sequence, helicity, charge, hydrophobicity, amphipathicity, polar angle, and also self-association. These parameters are interrelated and need to be considered in combination. So, gathering the most relevant available information will help to design and choose the most effective AMPs.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Karimzadeh Barenji E, Beglari S, Tahghighi A, Azerang P, Rohani M. Evaluation of Anti-Bacterial and Anti-Biofilm Activity of Native Probiotic Strains of Lactobacillus Extracts. IRANIAN BIOMEDICAL JOURNAL 2023; 28:102-12. [PMID: 38850020 PMCID: PMC11186614 DOI: 10.61186/ibj.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 06/09/2024]
Abstract
Background Lactic acid bacteria produce various beneficial metabolites, including antimicrobial agents. Owing to the fast-rising antibiotic resistance among pathogenic microbes, scientists are exploring antimicrobials beyond antibiotics. In this study, we examined four Lactobacillus strains, namely L. plantarum 42, L. brevis 205, L. rhamnosus 239, and L. delbrueckii 263, isolated from healthy human microbiota, to evaluate their antibacterial and antifungal activity. Methods Lactobacillus strains were cultivated, and the conditioned media were obtained. The supernatant was then used to treat pathogenic bacteria and applied to the growth media containing fungal and bacterial strains. Additionally, the supernatant was separated to achieve the organic and aqueous phases. The two phases were then examined in terms of bacterial and fungal growth rates. Disk diffusion and MIC tests were conducted to determine strains with the most growth inhibition potential. Finally, the potent strains identified through the MIC test were tested on the pathogenic microorganisms to assess their effects on the formation of pathogenic biofilms. Results The organic phase of L. rhamnosus 239 extracts exhibited the highest antibacterial and antibiofilm effects, while that of L. brevis 205 demonstrated the most effective antifungal impact, with a MIC of 125 µg/mL against Saccharomyces cerevisiae. Conclusion This study confirms the significant antimicrobial impacts of the lactic acid bacteria strains on pathogenic bacteria and fungi; hence, they could serve as a reliable alternative to antibiotics for a safe and natural protection against pathogenic microorganisms.
Collapse
Affiliation(s)
- Elmira Karimzadeh Barenji
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shokufeh Beglari
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Kong J, Wang Y, Han Y, Zhou H, Huang Z, Zhang X, Zhou C, Cao J, Zhou T. Octominin: An antimicrobial peptide with antibacterial and anti-inflammatory activity against carbapenem-resistant Escherichia coli both in vitro and in vivo. J Glob Antimicrob Resist 2023; 35:172-180. [PMID: 37716532 DOI: 10.1016/j.jgar.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES The emergence of carbapenem-resistant Escherichia coli (CREC) is a global concern as its prevalence restricts treatment options and poses a considerable threat to public health. In this study, in vitro and in vivo activity of the antimicrobial peptide Octominin against CREC was investigated to reveal possible mechanisms of action. Furthermore, its safety and factors influencing its antibacterial effect were assessed. Additionally, the anti-inflammatory effects of Octominin were examined. METHODS The antimicrobial activity of Octominin against 11 strains of CREC was determined using the broth microdilution method, growth curve, and time-kill assay. Its possible mechanism of action was unraveled using the propidium iodide and N-phenyl-1-naphthylamine fluorochrome and lipopolysaccharide-binding assays. To understand the safety and stability of Octominin, its cytotoxicity, hemolysis, and antibacterial activity under various conditions (i.e, temperature, ions) were estimated. Additionally, a Galleria mellonella infection model was utilized to evaluate the efficacy of Octominin in vivo, and qRT-PCR was performed to assess its effect on the expression of proinflammatory cytokines. RESULTS Octominin displayed a significant antibacterial effect, with MICs of 4-8 µg/mL and MBCs of 8-16 µg/mL. Octominin exerted its antibacterial effect by disrupting bacterial membranes. Cytotoxicity and hemolysis tests demonstrated the potential application of Octominin in vivo. The G. mellonella infection model asserted the in vivo efficacy of Octominin. Furthermore, Octominin inhibited the expression of proinflammatory cytokines. Although the temperature had little effect on its the activity, serum and ions reduced activity. CONCLUSION Octominin is a promising alternative agent with remarkable antibacterial and anti-inflammatory effects for treating infections caused by CREC.
Collapse
Affiliation(s)
- Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Yue Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Huijing Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhenyun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Nguyen TN, Teimouri H, Kolomeisky AB. Increasing Heterogeneity in Antimicrobial Peptide Combinations Enhances Their Synergistic Activities. J Phys Chem Lett 2023; 14:8405-8411. [PMID: 37708492 DOI: 10.1021/acs.jpclett.3c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Antimicrobial peptides (AMPs) are short biopolymers produced by living organisms as an immune system defense against infections. They have been considered as potential alternatives to conventional antibiotics. Experiments suggest that combining several types of different AMPs might enhance their antimicrobial activity more effectively than using single-component AMPs. However, a clear understanding of the underlying microscopic mechanisms is still lacking. We present a theoretical investigation of antibacterial cooperativity mechanisms involving several types of AMPs. It is argued that synergy results from intermolecular interactions when the presence of one type of AMP stimulates the association of another type of AMP to bacteria. It is found that increasing the number of different AMPs in the mixtures increases the number of such interactions, making them more efficient in eliminating infections. Our theoretical framework provides valuable insights into the mechanisms of antimicrobial action.
Collapse
Affiliation(s)
- Thao N Nguyen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Hamid Teimouri
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Turrina C, Cookman J, Bellan R, Song J, Paar M, Dankers PYW, Berensmeier S, Schwaminger SP. Iron Oxide Nanoparticles with Supramolecular Ureido-Pyrimidinone Coating for Antimicrobial Peptide Delivery. Int J Mol Sci 2023; 24:14649. [PMID: 37834098 PMCID: PMC10573039 DOI: 10.3390/ijms241914649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.
Collapse
Affiliation(s)
- Chiara Turrina
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
| | - Jennifer Cookman
- Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Castletroy, Ireland;
| | - Riccardo Bellan
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Jiankang Song
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
| | - Sebastian P. Schwaminger
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| |
Collapse
|
12
|
Majewska A, Gajewska M, Dembele K. Effect of Allergen-Specific Immunotherapy on Transcriptomic Changes in Canine Atopic Dermatitis. Int J Mol Sci 2023; 24:11616. [PMID: 37511372 PMCID: PMC10380577 DOI: 10.3390/ijms241411616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Canine atopic dermatitis (cAD) is a genetic, chronic, and recurrent inflammatory and pruritic skin disorder. Allergen-specific immunotherapy (ASIT) is presently recognized as the only clinically effective disease-modifying treatment for allergies. The aim of our study was to analyze the changes in gene expression observed in the peripheral blood nuclear cells of cAD patients subjected to ASIT. Blood samples designated for transcriptomic analyses were collected from AD dogs twice, before and six months after ASIT, and also from healthy dogs. Statistical analysis revealed 521 differentially expressed transcripts, among which 241 transcripts represented genes with well-described functions. Based on the available literature, we chose nine differentially expressed genes (RARRES2, DPP10, SLPI, PLSCR4, MMP9, NTSR1, CBD103, DEFB122, and IL36G) which may be important in the context of the dysregulated immune response observed in cAD patients. The expressions of five out of the nine described genes (DPP10, PLSCR4, NTSR1, DEFB122, and IL36G) changed after the application of ASIT. The expressions of three of these genes returned to the level observed in the healthy control group. The genes listed above need further investigation to determine details of their role in the molecular mechanism of immune tolerance induction in response to allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kourou Dembele
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
13
|
Routsias JG, Marinou D, Mavrouli M, Tsakris A, Pitiriga V. Serum β-Defensin 2, A Novel Biomarker for the Diagnosis of Acute Infections. Diagnostics (Basel) 2023; 13:diagnostics13111885. [PMID: 37296737 DOI: 10.3390/diagnostics13111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Defensins are natural antimicrobial peptides that the human body secretes to protect itself from an infection. Thus, they are ideal molecules to serve as biomarkers for infection. This study was conducted to evaluate the levels of human β-defensins in patients with inflammation. METHODS CRP, hBD2 and procalcitonin were measured in 423 sera of 114 patients with inflammation and healthy individuals using nephelometry and commercial ELISA assays. RESULTS Levels of hBD2 in the serum of patients with an infection were markedly elevated compared to those of hBD2 in patients with inflammation of non-infectious etiology (p < 0.0001, t = 10.17) and healthy individuals. ROC analysis demonstrated that hBD2 showed the highest detection performance for infection (AUC 0.897; p < 0.001) followed by PCT (AUC 0.576; p = ns) and CRP (AUC 0.517; p = ns). In addition, analysis of hBD2 and CRP in patients' sera collected at different time points showed that hBD2 levels could help differentiate inflammation of infectious and non-infectious etiology during the first 5 days of hospitalization, while CRP levels could not. CONCLUSIONS hBD2 has the potential to serve as a diagnostic biomarker for infection. In addition, the levels of hBD2 may reflect the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- John G Routsias
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Dionysia Marinou
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Maria Mavrouli
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Athanasios Tsakris
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Vassiliki Pitiriga
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| |
Collapse
|
14
|
Fesahat F, Firouzabadi AM, Zare-Zardini H, Imani M. Roles of Different β-Defensins in the Human Reproductive System: A Review Study. Am J Mens Health 2023; 17:15579883231182673. [PMID: 37381627 PMCID: PMC10334010 DOI: 10.1177/15579883231182673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Human β-defensins (hBDs) are cationic peptides with an amphipathic spatial shape and a high cysteine content. The members of this peptide family have been found in the human body with various functions, including the human reproductive system. Of among β-defensins in the human body, β-defensin 1, β-defensin 2, and β-defensin 126 are known in the human reproductive system. Human β-defensin 1 interacts with chemokine receptor 6 (CCR6) in the male reproductive system to prevent bacterial infections. This peptide has a positive function in antitumor immunity by recruiting dendritic cells and memory T cells in prostate cancer. It is necessary for fertilization via facilitating capacitation and acrosome reaction in the female reproductive system. Human β-defensin 2 is another peptide with antibacterial action which can minimize infection in different parts of the female reproductive system such as the vagina by interacting with CCR6. Human β-defensin 2 could play a role in preventing cervical cancer via interactions with dendritic cells. Human β-defensin 126 is required for sperm motility and protecting the sperm against immune system factors. This study attempted to review the updated knowledge about the roles of β-defensin 1, β-defensin 2, and β-defensin 126 in both the male and female reproductive systems.
Collapse
Affiliation(s)
- Farzaneh Fesahat
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Imani
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
16
|
Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane-A Molecular Simulation Approach. Int J Mol Sci 2023; 24:ijms24032005. [PMID: 36768325 PMCID: PMC9916935 DOI: 10.3390/ijms24032005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
A short antimicrobial peptide (AMP), rich in tryptophan and arginine (P6-HRWWRWWRR-NH2), was used in molecular dynamics (MD) simulations to investigate the interaction between AMPs and lipopolysaccharides (LPS) from two E. coli outer membrane (OM) membrane models. The OM of Gram-negative bacteria is an asymmetric bilayer, with the outer layer consisting exclusively of lipopolysaccharide molecules and the lower leaflet made up of phospholipids. The mechanisms by which short AMPs permeate the OM of Gram-negative bacteria are not well understood at the moment. For this study, two types of E. coli OM membrane models were built with (i) smooth LPS composed of lipid A, K12 core and O21 O-antigen, and (ii) rough type LPS composed of lipid A and R1 core. An OmpF monomer from E. coli was embedded in both membrane models. MD trajectories revealed that AMP insertion in the LPS layer was facilitated by the OmpF-created gap and allowed AMPs to form hydrogen bonds with the phosphate groups of inner core oligosaccharides. OM proteins such as OmpF may be essential for the permeation of short AMPs such as P6 by exposing the LPS binding site or even by direct translocation of AMPs across the OM.
Collapse
|
17
|
Teixeira GTL, Gelamo RV, Mateus Santos Obata M, Andrade Silva LED, Silva MVD, Oliveira CJFD, Silva BPD, Aoki IV, Moreto JA, Slade NBL. Exploring the functionalization of Ti-6Al-4V alloy with the novel antimicrobial peptide JIChis-2 via plasma polymerization. BIOFOULING 2023; 39:47-63. [PMID: 36856008 DOI: 10.1080/08927014.2023.2183121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to characterize the immobilization of the novel JIChis-2 peptide on the Ti-6Al-4V alloy, widely used in the biomedical sector. The antimicrobial activity of JIChis-2 was evaluated in the Gram-negative bacterium E. coli. Its immobilization occurred by inducing the formation of covalent bonds between the N-terminus of the peptides and the surface previously submitted to acrylic acid polymerization via the PECVD technique. Coated and uncoated surfaces were characterized by FTIR, AFM, SEM and EDX. Studies of global and localized corrosion were carried out, seeking to explore the effects triggered by surface treatment in an aggressive environment. Additionally, the ability of the functionalized material to prevent E. coli biofilm formation evidenced that the strategy to immobilize JIChis-2 in the Ti-6Al-4V alloy via PECVD of acrylic acid resulted in the development of a functional material with antibiofilm properties.
Collapse
Affiliation(s)
- Gabriella Teresinha Lima Teixeira
- Institute of Exact and Natural Sciences and Education, Federal University of Triângulo Mineiro (UFTM), Univerdecidade, Uberaba, Minas Gerais, Brazil
- Department of Physics, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Rogério Valentim Gelamo
- Department of Physics, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
- Institute of Technological and Exact Sciences, Federal University of Triângulo Mineiro (UFTM), Univerdecidade, Uberaba, Minas Gerais, Brazil
| | - Malu Mateus Santos Obata
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Marcos Vinícius da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Brunela Pereira da Silva
- Polytechnic School, Chemical Engineering Department, University of São Paulo, Av. Prof. Luciano Gualberto, São Paulo, São Paulo, Brazil
| | - Idalina Vieira Aoki
- Polytechnic School, Chemical Engineering Department, University of São Paulo, Av. Prof. Luciano Gualberto, São Paulo, São Paulo, Brazil
| | - Jeferson Aparecido Moreto
- Institute of Exact and Natural Sciences and Education, Federal University of Triângulo Mineiro (UFTM), Univerdecidade, Uberaba, Minas Gerais, Brazil
- Department of Physics, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Natália Bueno Leite Slade
- Institute of Exact and Natural Sciences and Education, Federal University of Triângulo Mineiro (UFTM), Univerdecidade, Uberaba, Minas Gerais, Brazil
- Department of Physics, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
18
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
19
|
Jiménez MC, Kowalski L, Souto RB, Alves IA, Viana MD, Aragón DM. New drugs against multidrug-resistant Gram-negative bacteria: a systematic review of patents. Future Microbiol 2022; 17:1393-1408. [PMID: 36169345 DOI: 10.2217/fmb-2022-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Antimicrobial resistance has been a threat to human health ever since the accelerated consumption of antibiotics began. Materials & methods: The present systematic review was carried out using a free and specialized online database - Espacenet - and a survey for patents of antimicrobial agents from 2010 to 2021, selecting 33 recent patents that claimed compounds with antimicrobial activity against resistant strains of Gram-negative bacteria. Results: Some different and new approaches to the development of the patented antibacterial agents were identified, such as antimicrobial peptides, nanomaterials and natural extracts. Conclusion: Some alternatives to modern antibiotics with diminished effectiveness due to antimicrobial resistance were spotted. Nevertheless, many challenges remain to establish a robust and sustainable antibacterial R&D pipeline.
Collapse
Affiliation(s)
- María C Jiménez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Layza Kowalski
- Department of Health Sciences, Faculty of Pharmacy, Universidade Regional Integrada do Alto Uruguai e das Missões, Santo Ângelo, RS, Brazil
| | - Ricardo B Souto
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Izabel A Alves
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil.,Program of Post-graduation in Pharmaceutical Sciences, State University of Bahia, Salvador, BA, Brazil
| | - Max Dm Viana
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Diana M Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| |
Collapse
|
20
|
Cammarata-Mouchtouris A, Acker A, Goto A, Chen D, Matt N, Leclerc V. Dynamic Regulation of NF-κB Response in Innate Immunity: The Case of the IMD Pathway in Drosophila. Biomedicines 2022; 10:2304. [PMID: 36140409 PMCID: PMC9496462 DOI: 10.3390/biomedicines10092304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Metazoans have developed strategies to protect themselves from pathogenic attack. These preserved mechanisms constitute the immune system, composed of innate and adaptive responses. Among the two kinds, the innate immune system involves the activation of a fast response. NF-κB signaling pathways are activated during infections and lead to the expression of timely-controlled immune response genes. However, activation of NF-κB pathways can be deleterious when uncontrolled. Their regulation is necessary to prevent the development of inflammatory diseases or cancers. The similarity of the NF-κB pathways mediating immune mechanisms in insects and mammals makes Drosophila melanogaster a suitable model for studying the innate immune response and learning general mechanisms that are also relevant for humans. In this review, we summarize what is known about the dynamic regulation of the central NF-κB-pathways and go into detail on the molecular level of the IMD pathway. We report on the role of the nuclear protein Akirin in the regulation of the NF-κB Relish immune response. The use of the Drosophila model allows the understanding of the fine-tuned regulation of this central NF-κB pathway.
Collapse
Affiliation(s)
| | - Adrian Acker
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Akira Goto
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Nicolas Matt
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Vincent Leclerc
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
21
|
Otazo-Pérez A, Asensio-Calavia P, González-Acosta S, Baca-González V, López MR, Morales-delaNuez A, Pérez de la Lastra JM. Antimicrobial Activity of Cathelicidin-Derived Peptide from the Iberian Mole Talpa occidentalis. Vaccines (Basel) 2022; 10:vaccines10071105. [PMID: 35891269 PMCID: PMC9323388 DOI: 10.3390/vaccines10071105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
The immune systems of all vertebrates contain cathelicidins, a family of antimicrobial peptides. Cathelicidins are a type of innate immune effector that have a number of biological functions, including a well-known direct antibacterial action and immunomodulatory function. In search of new templates for antimicrobial peptide discovery, we have identified and characterized the cathelicidin of the small mammal Talpa occidentalis. We describe the heterogeneity of cathelicidin in the order Eulipotyphla in relation to the Iberian mole and predict its antibacterial activity using bioinformatics tools. In an effort to correlate these findings, we derived the putative active peptide and performed in vitro hemolysis and antimicrobial activity assays, confirming that Iberian mole cathelicidins are antimicrobial. Our results showed that the Iberian mole putative peptide, named To-KL37 (KLFGKVGNLLQKGWQKIKNIGRRIKDFFRNIRPMQEA) has antibacterial and antifungal activity. Understanding the antimicrobial defense of insectivores may help scientists prevent the spread of pathogens to humans. We hope that this study can also provide new, effective antibacterial peptides for future drug development.
Collapse
Affiliation(s)
- Andrea Otazo-Pérez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
| | - Manuel R. López
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Correspondence: ; Tel.: +34-922260112
| |
Collapse
|
22
|
Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 2022; 38:152. [PMID: 35781751 PMCID: PMC9250919 DOI: 10.1007/s11274-022-03334-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622, Pecs, Hungary
| |
Collapse
|
23
|
Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF. Antimicrobial Peptide Analogs From Scorpions: Modifications and Structure-Activity. Front Mol Biosci 2022; 9:887763. [PMID: 35712354 PMCID: PMC9197468 DOI: 10.3389/fmolb.2022.887763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The rapid development of multidrug-resistant pathogens against conventional antibiotics is a global public health problem. The irrational use of antibiotics has promoted therapeutic limitations against different infections, making research of new molecules that can be applied to treat infections necessary. Antimicrobial peptides (AMPs) are a class of promising antibiotic molecules as they present broad action spectrum, potent activity, and do not easily induce resistance. Several AMPs from scorpion venoms have been described as a potential source for the development of new drugs; however, some limitations to their application are also observed. Here, we describe strategies used in several approaches to optimize scorpion AMPs, addressing their primary sequence, biotechnological potential, and characteristics that should be considered when developing an AMP derived from scorpion venoms. In addition, this review may contribute towards improving the understanding of rationally designing new molecules, targeting functional AMPs that may have a therapeutic application.
Collapse
Affiliation(s)
- Bruno Amorim-Carmo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Adriana M. S. Parente
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Eden S. Souza
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Arnóbio A. Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Renata M. Araújo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Matheus F. Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| |
Collapse
|
24
|
Saeed SI, Mergani A, Aklilu E, Kamaruzzaman NF. Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock. Front Vet Sci 2022; 9:851052. [PMID: 35464355 PMCID: PMC9024325 DOI: 10.3389/fvets.2022.851052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial therapy is the most applied method for treating and preventing bacterial infection in livestock. However, it becomes less effective due to the development of antimicrobial resistance (AMR). Therefore, there is an urgent need to find new antimicrobials to reduce the rising rate of AMR. Recently, antimicrobial peptides (AMPs) have been receiving increasing attention due to their broad-spectrum antimicrobial activity, rapid killing activities, less toxicity, and cell selectivity. These features make them potent and potential alternative antimicrobials to be used in animals. Here, we discuss and summarize the AMPs in animals, classification, structures, mechanisms of action, and their potential use as novel therapeutic alternative antimicrobials to tackle the growing AMR threat.
Collapse
Affiliation(s)
- Shamsaldeen Ibrahim Saeed
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
- Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
- *Correspondence: Shamsaldeen Ibrahim Saeed
| | - AhmedElmontaser Mergani
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Erkihun Aklilu
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
| | - Nor Fadhilah Kamaruzzaman
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
- Nor Fadhilah Kamaruzzaman
| |
Collapse
|
25
|
Oliva R, Campanile M, Del Vecchio P, Pizzo E, Bosso A, Winter R, Petraccone L. The C-terminus of the GKY20 antimicrobial peptide, derived from human thrombin, plays a key role in its membrane perturbation capability. Phys Chem Chem Phys 2022; 24:7994-8002. [PMID: 35314853 DOI: 10.1039/d1cp05857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, we characterized in detail the mechanism of action of the antimicrobial peptide GKY20, showing that it selectively perturbs the bacterial-like membrane employing peptide conformational changes, lipid segregation and domain formation as key steps in promoting membrane disruption. Here, we used a combination of biophysical techniques to similarly characterize the antimicrobial activity as well as the membrane perturbing capability of GKY10, a much shorter version of the GKY20 peptide. GKY10 is only half of the parent peptide and consists of the last 10 amino acids (starting from the C-terminus) of the full-length peptide. Despite a large difference in length, we found that GKY10, like the parent peptide, retains the ability to adopt a helical structure and to induce lipid segregation upon membrane binding. Overall, our results suggest that the amino acid sequence of GKY10 is responsible for most of the observed behaviors of GKY20. Our results shed further light on the mechanism of action of the full-length peptide and provide useful information for the design and development of new peptides that serve as antimicrobial agents.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|
26
|
Lin WC, Chen YR, Chuang CM, Chen JY. A Cationic Amphipathic Tilapia Piscidin 4 Peptide-Based Antimicrobial Formulation Promotes Eradication of Bacterial Vaginosis-Associated Bacterial Biofilms. Front Microbiol 2022; 13:806654. [PMID: 35444633 PMCID: PMC9015711 DOI: 10.3389/fmicb.2022.806654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial vaginosis (BV) is prevalent among women of reproductive age and has a high rate of recurrence, which can be largely attributed to ineffective BV biofilm eradication by current first-line antibiotics. In this study, we report that the Nile tilapia piscidin 4 (TP4) exhibits broad-spectrum antimicrobial and antibiofilm activity against BV-associated bacteria, but not beneficial lactobacilli. In addition, BV-associated Gardnerella vaginalis remains susceptible to TP4 even after continual exposure to the peptide for up to 22 passages. Gardnerella vaginalis and Streptococcus anginosus are both biofilm-forming BV-associated bacteria, and we found that combining TP4 peptide and disodium EDTA with the biofilm-disrupting agent, chitosan, can eradicate biofilms formed by single or mixed G. vaginalis and S. anginosus. In addition, long-term storage of TP4 peptide in chitosan did not diminish its bactericidal activity toward G. vaginalis. Preformulation studies were performed using High performance liquid chromatography (HPLC) and Circular Dichroism (CD). The long-term stability of TP4 peptide was assessed under various conditions, such as different temperatures and ionic strengths, and in the presence of H2O2 and lactic acid. When exposed to sodium dodecyl sulfate (SDS), TP4 maintained its secondary structure at various temperatures, salt and disodium EDTA concentrations. Furthermore, the TP4 microbicide formulation significantly reduced the colonization density of BV-associated bacteria in mice infected with single or mixed bacteria (G. vaginalis and S. anginosus). The TP4 microbicide formulation showed biocompatibility with beneficial human vaginal lactobacilli and female reproductive tissues in C57BL/6 mice. These results suggest that the TP4 microbicide formulation could be a promising topical microbicide agent for BV treatment.
Collapse
Affiliation(s)
- Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Taiwan
| | - Yun-Ru Chen
- Academia Sinica Protein Clinic, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Mu Chuang
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Taiwan
- *Correspondence: Jyh-Yih Chen,
| |
Collapse
|
27
|
Tong X, Li J, Wei R, Gong L, Ji X, He T, Wang R. RW-BP100-4D, a Promising Antimicrobial Candidate With Broad-Spectrum Bactericidal Activity. Front Microbiol 2022; 12:815980. [PMID: 35145500 PMCID: PMC8822125 DOI: 10.3389/fmicb.2021.815980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022] Open
Abstract
With the rapid emergence and dissemination of antimicrobial resistance (AMR) genes in bacteria from animal, animal-derived food and human clinic, it is of great significance to develop new approaches to combat the multidrug-resistant bacteria. This study presented a short linear antimicrobial peptide RW-BP100-4D, which was derived from RW-BP100 (RRLFRRILRWL-NH2) by transforming the N-terminal 4th amino acid from L- to D-enantiomer. This modification remarkably reduced the peptide cytotoxicity to mammalian cells, as indicated by hemolytic and cytotoxicity assays. Meanwhile, the antimicrobial activity of RW-BP100-4D was improved against a more variety of Gram-positive and Gram-negative bacteria (sensitive and resistant) as well as fungi. Also, RW-BP100-4D showed strong in vitro anti-biofilm activity in a concentration-dependent manner, including inhibition of the biofilm-formation and dispersion of the mature biofilms of Staphylococcus aureus. RW-BP100-4D could be efficiently uptaken by bovine mammary epithelial cells (MAC-T) cells to eliminate the intracellular S. aureus ATCC29213 and Salmonella enterica ATCC13076. Moreover, RW-BP100-4D was highly effective in food disinfection of multiple bacterial contamination (including S. aureus, Listeria monocytogenesis, Escherichia coli O157: H7, Campylobacter jejuni, S. enterica, and Shewanella putrefaction, 3.61 ± 0.063 log reduction) on chicken meat, and could kill 99.99% of the methicillin-resistant Staphylococcus aureus (MRSA) strain in the mouse skin infection model. In summary, RW-BP100-4D is a promising antimicrobial candidate for application on food disinfection and local infection treatment. However, the protease-sensitivity of RW-BP100-4D and toxic effect at higher doses reduced the therapeutic effect of the candidate peptide in vivo and should be improved in the future studies.
Collapse
Affiliation(s)
- Xingqi Tong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Tao He,
| | - Ran Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Ran Wang,
| |
Collapse
|
28
|
Geng T, Lu F, Zhu F, Wang S. Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104171. [PMID: 34118279 DOI: 10.1016/j.dci.2021.104171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori is a model species of Lepidoptera, in which 21 gene families and 220 genes have been identified as involved in immunity. However, only 45 B. mori - Drosophila melanogaster - Anopheles gambiae - Apis mellifera - Tribolium castaneum 1:1:1:1:1 orthologous genes were identified. B. mori has unique immune factors not found in D. melanogaster - A. gambiae - A. mellifera - T. castaneum. Pattern recognition receptors, signal transducers and effector genes for antifungal immune responses in B. mori have evolved through expansion and modification of existing genes. This review summarizes the current knowledge of the antifungal immune responses of B. mori and focuses on the lineage-specific gene evolution used by Lepidoptera to adapt to the challenge by pathogens, especially entomopathogenic fungi.
Collapse
Affiliation(s)
- Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fuping Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
29
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
30
|
Rádai Z, Kiss J, Nagy NA. Taxonomic bias in AMP prediction of invertebrate peptides. Sci Rep 2021; 11:17924. [PMID: 34504226 PMCID: PMC8429723 DOI: 10.1038/s41598-021-97415-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Invertebrate antimicrobial peptides (AMPs) are at the forefront in the search for agents of therapeutic utility against multi-resistant microbial pathogens, and in recent years substantial advances took place in the in silico prediction of antimicrobial function of amino acid sequences. A yet neglected aspect is taxonomic bias in the performance of these tools. Owing to differences in the prediction algorithms and used training data sets between tools, and phylogenetic differences in sequence diversity, physicochemical properties and evolved biological functions of AMPs between taxa, notable discrepancies may exist in performance between the currently available prediction tools. Here we tested if there is taxonomic bias in the prediction power in 10 tools with a total of 20 prediction algorithms in 19 invertebrate taxa, using a data set containing 1525 AMP and 3050 non-AMP sequences. We found that most of the tools exhibited considerable variation in performance between tested invertebrate groups. Based on the per-taxa performances and on the variation in performances across taxa we provide guidance in choosing the best-performing prediction tool for all assessed taxa, by listing the highest scoring tool for each of them.
Collapse
Affiliation(s)
- Zoltán Rádai
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary.
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary.
| | - Johanna Kiss
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Nikoletta A Nagy
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
Zhao X, Xu Y, Viel JH, Kuipers OP. Semisynthetic Macrocyclic Lipo-lanthipeptides Display Antimicrobial Activity Against Bacterial Pathogens. ACS Synth Biol 2021; 10:1980-1991. [PMID: 34347446 PMCID: PMC8383303 DOI: 10.1021/acssynbio.1c00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A large number of antimicrobial peptides depend on intramolecular disulfide bonds for their biological activity. However, the relative instability of disulfide bonds has limited the potential of some of these peptides to be developed into therapeutics. Conversely, peptides containing intramolecular (methyl)lanthionine-based bonds, lanthipeptides, are highly stable under a broader range of biological and physical conditions. Here, the class-II lanthipeptide synthetase CinM, from the cinnamycin gene cluster, was employed to create methyllanthionine stabilized analogues of disulfide-bond-containing antimicrobial peptides. The resulting analogues were subsequently modified in vitro by adding lipid tails of variable lengths through chemical addition. Finally, the created compounds were characterized by MIC tests against several relevant pathogens, killing assays, membrane permeability assays, and hemolysis assays. It was found that CinM could successfully install methyllanthionine bonds at the intended positions of the analogues and that the lipidated macrocyclic core peptides have bactericidal activity against tested Gram-positive and Gram-negative pathogenic bacteria. Additionally, fluorescence microscopy assays revealed that the lipidated compounds disrupt the bacterial membrane and lyse bacterial cells, hinting toward a potential mode of action. Notably, the semisynthesized macrocyclic lipo-lanthipeptides show low hemolytic activity. These results show that the methods developed here extend the toolbox for novel antimicrobial development and might enable the further development of novel compounds with killing activity against relevant pathogenic bacteria.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Yanli Xu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
32
|
Zhao X, Kuipers OP. Nisin- and Ripcin-Derived Hybrid Lanthipeptides Display Selective Antimicrobial Activity against Staphylococcus aureus. ACS Synth Biol 2021; 10:1703-1714. [PMID: 34156232 PMCID: PMC8291769 DOI: 10.1021/acssynbio.1c00080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Lanthipeptides are (methyl)lanthionine ring-containing ribosomally synthesized and post-translationally modified peptides (RiPPs). Many lanthipeptides show strong antimicrobial activity against bacterial pathogens, including antibiotic-resistant bacterial pathogens. The group of disulfide-bond-containing antimicrobial peptides (AMPs) is well-known in nature and forms a rich source of templates for the production of novel peptides with corresponding (methyl)lanthionine analogues instead of disulfides. Here, we show that novel macrocyclic lanthipeptides (termed thanacin and ripcin) can be synthesized using the known antimicrobials thanatin and rip-thanatin as templates. Notably, the synthesized nisin(1-20)-ripcin hybrid lanthipeptides (ripcin B-G) showed selective antimicrobial activity against S. aureus, including an antibiotic-resistant MRSA strain. Interestingly, ripcin B-G, which are hybrid peptides of nisin(1-20) and ripcin that are each inactive against Gram-negative pathogens, showed substantial antimicrobial activity against the tested Gram-negative pathogens. Moreover, ripcin B-G was highly resistant against the nisin resistance protein (NSR; a peptidase that removes the C-terminal 6 amino acids of nisin and strongly reduces its antimicrobial activity), opposed to nisin itself. This study provides an example of converting disulfide-bond-based AMPs into (methyl)lanthionine-based macrocyclic hybrid lanthipeptides and can yield antimicrobial peptides with selective antimicrobial activity against S. aureus.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
33
|
Wen X, Gongpan P, Meng Y, Nieh JC, Yuan H, Tan K. Functional characterization, antimicrobial effects, and potential antibacterial mechanisms of new mastoparan peptides from hornet venom (Vespa ducalis, Vespa mandarinia, and Vespa affinis). Toxicon 2021; 200:48-54. [PMID: 34237341 DOI: 10.1016/j.toxicon.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Antibiotic-resistant bacteria are a major threat to global public health, and there is an urgent need to find effective, antimicrobial treatments that can be well tolerated by humans. Hornet venom is known to have antimicrobial properties, and contains peptides with similarity to known antimicrobial eptides (AMPs), mastoparans. We identified multiple new AMPs from the venom glands of Vespa ducalis (U-VVTX-Vm1a, U-VVTX-Vm1b, and U-VVTX-Vm1c), Vespa mandarinia (U-VVTX-Vm1d), and Vespa affinis (U-VVTX-Vm1e). All of these AMPs have highly similar sequences and are related to the toxic peptide, mastoparan. Our newly identified AMPs have α-helical structures, are amphiphilic, and have antimicrobial properties. Both U-VVTX-Vm1b and U-VVTX-Vm1e killed bacteria, Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922, at the concentrations of 16 μg/mL and 32 μg/mL, respectively. None of the five AMPs exhibited strong toxicity as measured via their hemolytic activity on red blood cells. U-VVTX-Vm1b was able to increase the permeability of E. coli ATCC25922 and degrade its genomic DNA. These results are promising, demonstrate the value of investigating hornet venom as an antimicrobial treatment, and add to the growing arsenal of such naturally derived treatments.
Collapse
Affiliation(s)
- Xinxin Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650000, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pianchou Gongpan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650000, Yunnan, China
| | - Yichuan Meng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650000, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, USA
| | - Hongling Yuan
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China.
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650000, Yunnan, China.
| |
Collapse
|
34
|
Kim MI, Pham TK, Kim D, Park M, Kim BO, Cho YH, Kim YW, Lee C. Identification of brevinin-1EMa-derived stapled peptides as broad-spectrum virus entry blockers. Virology 2021; 561:6-16. [PMID: 34089997 DOI: 10.1016/j.virol.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Based on the previously reported 13-residue antibacterial peptide analog, brevinin-1EMa (FLGWLFKVASKVL, peptide B), we attempted to design a novel class of antiviral peptides. For this goal, we synthesized three peptides with different stapling positions (B-2S, B-8S, and B-5S). The most active antiviral peptide with the specific stapling position (B-5S) was further modified in combination with either cysteine (B-5S3C, B-5S7C, and B-5S10C) or hydrophilic amino acid substitution (Bsub and Bsub-5S). Overall, B, B-5S, and Bsub-5S peptides showed superior antiviral activities against enveloped viruses such as retrovirus, lentivirus, hepatitis C virus, and herpes simplex virus with EC50 values of 1-5 μM. Murine norovirus, a non-enveloped virus, was not susceptible to the virucidal actions of these peptides, suggesting the virus membrane disruption as their main antiviral mechanisms of action. We believe that these three novel peptides could serve as promising candidates for further development of membrane-targeting antiviral drugs in the future.
Collapse
Affiliation(s)
- Mi Il Kim
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Thanh K Pham
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Dahee Kim
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Minkyung Park
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Republic of Korea
| | - Young-Woo Kim
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea.
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea.
| |
Collapse
|
35
|
Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III. Int J Mol Sci 2021; 22:ijms22062857. [PMID: 33799744 PMCID: PMC8001998 DOI: 10.3390/ijms22062857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of the eusocial bee Lasioglossum laticeps. LL-III is extremely toxic to both Gram-positive and Gram-negative bacteria, and it exhibits antifungal as well as antitumor activity. Moreover, it shows low hemolytic activity, and it has almost no toxic effects on eukaryotic cells. However, the molecular basis of the LL-III mechanism of action is still unclear. In this study, we characterized by means of calorimetric (DSC) and spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids as a model of the negatively charged membrane of pathogens. For comparison, the interaction of LL-III with the uncharged POPC liposomes was also studied. Our data showed that LL-III preferentially interacted with anionic lipids in the POPC/POPG liposomes and induces the formation of lipid domains. Furthermore, the leakage experiments showed that the peptide could permeabilize the membrane. Interestingly, our DSC results showed that the peptide-membrane interaction occurs in a non-disruptive manner, indicating an intracellular targeting mode of action for this peptide. Consistent with this hypothesis, our gel-retardation assay experiments showed that LL-III could interact with plasmid DNA, suggesting a possible intracellular target.
Collapse
|
36
|
Zong X, Fu J, Xu B, Wang Y, Jin M. Interplay between gut microbiota and antimicrobial peptides. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:389-396. [PMID: 33364454 PMCID: PMC7750803 DOI: 10.1016/j.aninu.2020.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
The gut microbiota is comprised of a diverse array of microorganisms that interact with immune system and exert crucial roles for the health. Changes in the gut microbiota composition and functionality are associated with multiple diseases. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Major players in this scenario are antimicrobial peptides (AMP), which belong to an ancient defense system found in all organisms and participate in a preservative co-evolution with a complex microbiome. Particularly increasing interactions between AMP and microbiota have been found in the gut. Here, we focus on the mechanisms by which AMP help to maintain a balanced microbiota and advancing our understanding of the circumstances of such balanced interactions between gut microbiota and host AMP. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota, which should have therapeutic implications for different intestinal disorders.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bocheng Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Marimuthu SK, Nagarajan K, Perumal SK, Palanisamy S, Subbiah L. Structural stability of antimicrobial peptides rich in tryptophan, proline and arginine: a computational study. J Biomol Struct Dyn 2020; 40:3551-3559. [PMID: 33210568 DOI: 10.1080/07391102.2020.1848631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The host defense peptides or antimicrobial peptides (AMPs) often contain short sequence of amino acids, either positive or negatively charged and express broad-spectrum antibacterial, antiviral and antifungal activity. Many researchers had reported that tryptophan, arginine and proline rich AMPs have a promising source of next-generation antibiotics. Nowadays, AMPs are used as a possible therapeutic source for future antibiotics. In the present study, the amino acid sequences of 2924 AMPs belonging to various sources rich in Tryptophan, Proline and Arginine was chosen for investigation. The AMPs were further categorized according to their source, structure and antimicrobial activities. The AMPs with tryptophan, arginine, proline residues in abundance with maximum sequence length of 20 amino acids alone was obtained. Homology modeling was performed with PEP-FOLD and the modeled structures were evaluated using RAMPAGE to identify the structural information. Further, the stability of peptide in aqueous condition was probed using molecular dynamics simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sathish Kumar Marimuthu
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu, India
| | - Krishnanand Nagarajan
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu, India
| | - Sathish Kumar Perumal
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu, India
| | - Selvamani Palanisamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu, India
| | - Latha Subbiah
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu, India
| |
Collapse
|
38
|
Abstract
Introduction: Antimicrobial peptides are a large class of compounds that are part of innate immune response found among all classes of life and are considered promising compounds to deal with antimicrobial resistance. These AMPs have been demonstrated to have some advantages over the traditional antibiotics with a broad spectrum of antimicrobial activities and even overcome bacterial drug-resistance. Areas covered: The present review represents a comprehensive analysis of patents and patent applications available on Espacenet, from the year 2015 to 2020 referring to the therapeutic use of AMPs. Expert opinion: There are important examples about the use of antimicrobial peptides in clinical practice (e.g. polimixin b, colistin, etc.). AMPs are usually inspired by nature being produced by different living organisms as defensive and/or competition mechanisms. Despite limitations related to their development in classical drug discovery pipeline, they are endowed with relevant advantages, such as an unlimited reservoir of organisms able to produce new AMPs and they represent good starting point upon which to develop new antimicrobials.
Collapse
|
39
|
|
40
|
Overview of Host Defense Peptides and Their Applications for Plastic and Reconstructive Surgeons. Plast Reconstr Surg 2020; 146:91-103. [PMID: 32590651 DOI: 10.1097/prs.0000000000006910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Host defense peptides are a family of endogenous short peptides that are found in all living beings and play a critical role in innate immunity against infection. METHODS A nonsystematic review of host defense peptides was conducted with specific interest in properties and applications relevant to plastic and reconstructive surgery. RESULTS In addition to their direct antimicrobial actions against pathogens, including multidrug-resistant bacteria, they also demonstrate important functions in immunomodulation, tumor cell lysis, and tissue regeneration. These properties have made them a topic of clinical interest for plastic surgeons because of their potential applications as novel antibiotics, wound healing medications, and cancer therapies. The rising clinical interest has led to a robust body of literature describing host defense peptides in great depth and breadth. Numerous mechanisms have been observed to explain their diverse functions, which rely on specific structural characteristics. However, these peptides remain mostly experimental, with limited translation to clinical practice because of numerous failures to achieve acceptable results in human trials. CONCLUSIONS Despite the broad ranging potential of these peptides for use in the field of plastic and reconstructive surgery, they are rarely discussed in the literature or at scientific meetings. In this review, the authors provide a summary of the background, structure, function, bacterial resistance, and clinical applications of host defense peptides with the goal of stimulating host defense peptide-based innovation within the field of plastic and reconstructive surgery.
Collapse
|
41
|
Schneider R, Primon-Barros M, Von Borowski RG, Chat S, Nonin-Lecomte S, Gillet R, Macedo AJ. Pseudonajide peptide derived from snake venom alters cell envelope integrity interfering on biofilm formation in Staphylococcus epidermidis. BMC Microbiol 2020; 20:237. [PMID: 32746783 PMCID: PMC7397659 DOI: 10.1186/s12866-020-01921-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background The increase in bacterial resistance phenotype cases is a global health problem. New strategies must be explored by the scientific community in order to create new treatment alternatives. Animal venoms are a good source for antimicrobial peptides (AMPs), which are excellent candidates for new antimicrobial drug development. Cathelicidin-related antimicrobial peptides (CRAMPs) from snake venoms have been studied as a model for the design of new antimicrobial pharmaceuticals against bacterial infections. Results In this study we present an 11 amino acid-long peptide, named pseudonajide, which is derived from a Pseudonaja textilis venom peptide and has antimicrobial and antibiofilm activity against Staphylococcus epidermidis. Pseudonajide was selected based on the sequence alignments of various snake venom peptides that displayed activity against bacteria. Antibiofilm activity assays with pseudonajide concentrations ranging from 3.12 to 100 μM showed that the lowest concentration to inhibit biofilm formation was 25 μM. Microscopy analysis demonstrated that pseudonajide interacts with the bacterial cell envelope, disrupting the cell walls and membranes, leading to morphological defects in prokaryotes. Conclusions Our results suggest that pseudonajide’s positives charges interact with negatively charged cell wall components of S. epidermidis, leading to cell damage and inhibiting biofilm formation.
Collapse
Affiliation(s)
- Rafael Schneider
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, Rennes, France.,Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Muriel Primon-Barros
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Gomes Von Borowski
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, Rennes, France.,Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sophie Chat
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, Rennes, France
| | - Sylvie Nonin-Lecomte
- Faculté de Pharmacie, Université de Paris, CNRS, CiTCoM, UMR 8038, Paris, France
| | - Reynald Gillet
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, Rennes, France.
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
42
|
Li B, Yang N, Wang X, Hao Y, Mao R, Li Z, Wang Z, Teng D, Wang J. An Enhanced Variant Designed From DLP4 Cationic Peptide Against Staphylococcus aureus CVCC 546. Front Microbiol 2020; 11:1057. [PMID: 32582062 PMCID: PMC7291858 DOI: 10.3389/fmicb.2020.01057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Insect defensins are promising candidates for the development of potent antimicrobials against antibiotic-resistant Staphylococcus aureus (S. aureus). An insect defensin, DLP4, isolated from the hemolymph of Hermetia illucens larvae, showed low antimicrobial activity against Gram-positive (G+) pathogens and high cytotoxicity, which limited its effective therapeutic application. To obtain more potent and low cytotoxicity molecules, a series of peptides was designed based on the DLP4 template by changing the conservative site, secondary structure, charge, or hydrophobicity. Among them, a variant designated as ID13 exhibited strong antibacterial activity at low MIC values of 4-8 μg/mL to G+ pathogens (S. aureus: 4 μg/mL; Staphylococcus epidermidis: 8 μg/mL; Streptococcus pneumoniae: 4 μg/mL; Streptococcus suis: 4 μg/mL), which were lower than those of DLP4 (S. aureus: 16 μg/mL; S. epidermidis: 64 μg/mL; S. pneumoniae: 32 μg/mL; S. suis: 16 μg/mL), and cytotoxicity of ID13 (71.4% viability) was less than that of DLP4 (63.8% viability). ID13 could penetrate and destroy the cell membrane of S. aureus CVCC 546, resulting in an increase in potassium ion leakage; it bound to genomic DNA (gDNA) and led to the change of gDNA conformation. After treatment with ID13, perforated, wrinkled, and collapsed S. aureus CVCC 546 cells were observed in electron microscopy. Additionally, ID13 killed over 99.99% of S. aureus within 1 h, 2 × MIC of ID13 induced a post-antibiotic effect (PAE) of 12.78 ± 0.28 h, and 10 mg/kg ID13 caused a 1.8 log10 (CFU/g) (CFU: colony-forming units) reduction of S. aureus in infected mouse thigh muscles and a downregulation of TNF-α, IL-6, and IL-10 levels, which were superior to those of DLP4 or vancomycin. These findings indicate that ID13 may be a promising peptide antimicrobial agent for therapeutic application.
Collapse
Affiliation(s)
- Bing Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhanzhan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
43
|
Domingues TM, Perez KR, Riske KA. Revealing the Mode of Action of Halictine Antimicrobial Peptides: A Comprehensive Study with Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5145-5155. [PMID: 32336099 DOI: 10.1021/acs.langmuir.0c00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antimicrobial peptides are innate host defense molecules with the ability to kill pathogens. They have been widely studied for their membrane lytic activity and their potential to overcome the ever-increasing threat of antimicrobial resistance against conventional antibiotics. Here, we focus on two halictines, antimicrobial peptides first obtained from the venom of the eusocial bee Halictus sexcinctus. The peptides, HAL-1 and HAL-2, are cationic (with +3 and +4 charges, respectively) and amphipathic, have 12 amino acid residues, and exhibit high biological activity. For this study, the mechanism of action of HAL-1 and HAL-2 was studied in detail using large and giant unilamellar vesicles composed of pure palmitoyl oleoyl phosphatidyl choline (POPC) and a mixture of POPC and the anionic lipid palmitoyl oleoyl phosphatidyl glycerol (POPG) as biomimetic models of the membranes of eukaryotes and microorganisms, respectively. A set of complementary techniques was put forward: carboxyfluorescein leakage assay, phase contrast optical microscopy, ζ-potential, static and dynamic light scattering, fluorescence and circular dichroism spectroscopies, and isothermal titration calorimetry. The results show that both halictines are able to interact strongly with anionic membranes: The interaction is exothermic and accompanied by structuring of the peptides as an α-helix and deep insertion into the membrane causing substantial membrane permeabilization at very low peptide/lipid molar ratios. Extensive vesicle aggregation was detected only at a high peptide concentration. On the other hand, the interaction of the halictines with POPC is significantly milder. Yet, the peptides were able to permeabilize the POPC membranes to some extent. Comparing both peptides, HAL-1 showed a somewhat stronger effect on model membranes. Fits to the data revealed apparent binding constants on the order of 103-104 M-1 for anionic membranes and 1 order of magnitude lower for zwitterionic bilayers. When lytic activity results were compared at the same bound peptide/lipid ratio, the halictines exhibited a higher activity toward zwitterionic membranes. As novel peptides, small and with powerful activity, these halictines are potential candidates for becoming antimicrobial agents.
Collapse
Affiliation(s)
- Tatiana M Domingues
- Departamento de Biofı́sica, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil
| | - Katia R Perez
- Departamento de Biofı́sica, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil
| | - Karin A Riske
- Departamento de Biofı́sica, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil
| |
Collapse
|
44
|
Abstract
Antibacterial agents are a group of materials that selectively destroy bacteria by interfering with bacterial growth or survival. With the emergence of resistance phenomenon of bacterial pathogens to current antibiotics, new drugs are frequently entering into the market along with the existing drugs, and the alternative compounds with antibacterial functions are being explored. Due to the advantages of their inherent biochemical and biophysical properties including precise targeting ability, biocompatibility, biodegradability, long blood circulation time, and low cytotoxicity, biomolecules such as peptides, carbohydrates, and nucleic acids have huge potential for the antimicrobial application and have been extensively studied in recent years. In this review, antimicrobial therapeutic agents composed of three kinds of functional biological molecules were summarized. In addition, the research progress of antibacterial mechanism, chemical modification, and nanoparticle coupling of those biomolecules were also discussed.
Collapse
|
45
|
Khademi M, Nazarian‐Firouzabadi F, Ismaili A, Shirzadian Khorramabad R. Targeting microbial pathogens by expression of new recombinant dermaseptin peptides in tobacco. Microbiologyopen 2019; 8:e837. [PMID: 30912302 PMCID: PMC6854847 DOI: 10.1002/mbo3.837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Dermaseptin B1 (DrsB1), an antimicrobial cationic 31 amino acid peptide, is produced by Phyllomedusa bicolor. In an attempt to enhance the antimicrobial efficacy of DrsB1, the DrsB1 encoding 93 bp sequence was either fused to the N or C terminus of sequence encoding chitin-binding domain (CBD) of Avr4 gene from Cladosporium fulvum. Tobacco leaf disk explants were inoculated with Agrobacterium rhizogenes harboring pGSA/CBD-DrsB1 and pGSA/DrsB1-CBD expression vectors to produce hairy roots (HRs). Polymerase chain reaction (PCR) was employed to screen putative transgenic tobacco lines. Semi-quantitative RT-PCR and western blotting analysis indicated that the expression of recombinant genes were significantly higher, and recombinant proteins were produced in transgenic HRs. The recombinant proteins were extracted from the tobacco HRs and used against Pectobacterium carotovorum, Agrobacterium tumefaciens, Ralstonia solanacearum, and Xanthomonas campestris pathogenic bacteria and Alternaria alternata and Pythium sp. fungi. Two recombinant proteins had a statistically significant (p < 0.01) inhibitory effect on the growth and development of plant pathogens. The CBD-DrsB1 recombinant protein demonstrated a higher antibacterial effect, whereas the DrsB1-CBD recombinant protein demonstrated greater antifungal activity. Scanning electron microscopy images revealed that the structure of the fungal mycelia appeared segmented, adhered to each other, and crushed following the antimicrobial activity of the recombinant proteins. Due to the high antimicrobial activity of the recombinant proteins against plant pathogens, this strategy can be used to generate stable transgenic crop plants resistant to devastating plant pathogens.
Collapse
Affiliation(s)
- Mitra Khademi
- Agronomy and Plant Breeding Department, Faculty of AgricultureLorestan UniversityKhorramabadIran
| | | | - Ahmad Ismaili
- Agronomy and Plant Breeding Department, Faculty of AgricultureLorestan UniversityKhorramabadIran
| | | |
Collapse
|
46
|
Anandan A, Vrielink A. Structure and function of lipid A-modifying enzymes. Ann N Y Acad Sci 2019; 1459:19-37. [PMID: 31553069 DOI: 10.1111/nyas.14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharides are complex molecules found in the cell envelop of many Gram-negative bacteria. The toxic activity of these molecules has led to the terminology of endotoxins. They provide bacteria with structural integrity and protection from external environmental conditions, and they interact with host signaling receptors to induce host immune responses. Bacteria have evolved enzymes that act to modify lipopolysaccharides, particularly the lipid A region of the molecule, to enable the circumvention of host immune system responses. These modifications include changes to lipopolysaccharide by the addition of positively charged sugars, such as N-Ara4N, and phosphoethanolamine (pEtN). Other modifications include hydroxylation, acylation, and deacylation of fatty acyl chains. We review the two-component regulatory mechanisms for enzymes that carry out these modifications and provide details of the structures of four enzymes (PagP, PagL, pEtN transferases, and ArnT) that modify the lipid A portion of lipopolysaccharides. We focus largely on the three-dimensional structures of these enzymes, which provide an understanding of how their substrate binding and catalytic activities are mediated. A structure-function-based understanding of these enzymes provides a platform for the development of novel therapeutics to treat antibiotic resistance.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
47
|
Greene JR, Merrett KL, Heyert AJ, Simmons LF, Migliori CM, Vogt KC, Castro RS, Phillips PD, Baker JL, Lindberg GE, Fox DT, Del Sesto RE, Koppisch AT. Scope and efficacy of the broad-spectrum topical antiseptic choline geranate. PLoS One 2019; 14:e0222211. [PMID: 31527873 PMCID: PMC6748422 DOI: 10.1371/journal.pone.0222211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Choline geranate (also described as Choline And GEranic acid, or CAGE) has been developed as a novel biocompatible antiseptic material capable of penetrating skin and aiding the transdermal delivery of co-administered antibiotics. The antibacterial properties of CAGE were analyzed against 24 and 72 hour old biofilms of 11 clinically isolated ESKAPE pathogens (defined as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter sp, respectively), including multidrug resistant (MDR) isolates. CAGE was observed to eradicate in vitro biofilms at concentrations as low as 3.56 mM (0.156% v:v) in as little as 2 hours, which represents both an improved potency and rate of biofilm eradication relative to that reported for most common standard-of-care topical antiseptics in current use. In vitro time-kill studies on 24 hour old Staphylococcus aureus biofilms indicate that CAGE exerts its antibacterial effect upon contact and a 0.1% v:v solution reduced biofilm viability by over three orders of magnitude (a 3log10 reduction) in 15 minutes. Furthermore, disruption of the protective layer of exopolymeric substances in mature biofilms of Staphylococcus aureus by CAGE (0.1% v:v) was observed in 120 minutes. Insight into the mechanism of action of CAGE was provided with molecular modeling studies alongside in vitro antibiofilm assays. The geranate ion and geranic acid components of CAGE are predicted to act in concert to integrate into bacterial membranes, affect membrane thinning and perturb membrane homeostasis. Taken together, our results show that CAGE demonstrates all properties required of an effective topical antiseptic and the data also provides insight into how its observed antibiofilm properties may manifest.
Collapse
Affiliation(s)
- Joshua R. Greene
- Department of Chemistry, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Kahla L. Merrett
- Department of Chemistry, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Alexanndra J. Heyert
- Department of Chemistry, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Lucas F. Simmons
- Department of Chemistry, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Camille M. Migliori
- Department of Chemistry, Dixie State University, St. George, UT, United States of America
| | - Kristen C. Vogt
- Department of Chemistry, The College of New Jersey, Ewing, NJ, United States of America
| | - Rebeca S. Castro
- Department of Chemistry, The College of New Jersey, Ewing, NJ, United States of America
| | - Paul D. Phillips
- Department of Chemistry, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Joseph L. Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ, United States of America
| | - Gerrick E. Lindberg
- Department of Chemistry, Northern Arizona University, Flagstaff, AZ, United States of America
- Center for Materials Interfaces in Research and Application, Northern Arizona University, Flagstaff, AZ, United States of America
| | - David T. Fox
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Rico E. Del Sesto
- Department of Chemistry, Dixie State University, St. George, UT, United States of America
| | - Andrew T. Koppisch
- Department of Chemistry, Northern Arizona University, Flagstaff, AZ, United States of America
- Center for Materials Interfaces in Research and Application, Northern Arizona University, Flagstaff, AZ, United States of America
| |
Collapse
|
48
|
Chen W, Yang S, Li S, Lang JC, Mao C, Kroll P, Tang L, Dong H. Self-Assembled Peptide Nanofibers Display Natural Antimicrobial Peptides to Selectively Kill Bacteria without Compromising Cytocompatibility. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28681-28689. [PMID: 31328913 DOI: 10.1021/acsami.9b09583] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the major hurdles in the development of antimicrobial peptide (AMP)-based materials is their poor capacity in selectively killing bacteria without harming nearby mammalian cells. Namely, they are antimicrobial but cytotoxic. Current methods of nanoparticle-encapsulated AMPs to target bacteria selectively still have not yet overcome this hurdle. Here, we demonstrate a simple yet effective method to address this daunting challenge by associating a natural AMP with a β-sheet-forming synthetic peptide. The integrated peptides self-assembled to form a supramolecular nanofiber, resulting in the presentation of the AMP at the nanofiber-solvent interface in a precisely controlled manner. Using melittin as a model natural AMP, we found that the conformation of melittin changed dramatically when presented on the nanofiber surface, which, in turn, modulated the induced membrane permeability of the bacterial and mammalian cell membranes. Specifically, the presentation of melittin on the nanofiber restricted its hydrophobic residues, leading to a reduction of the hydrophobic interaction with lipids in the cell membranes. Compellingly, the reduced hydrophobic interaction led to a considerable decrease of melittin's induced permeability of the mammalian cell membrane than that of the bacterial cell membrane. As a result, the AMP-displaying nanofiber preferentially permeabilized and disrupted the membrane of the bacteria without compromising the mammalian cells. Such improved membrane selectivity and cytocompatibility were confirmed in a cell-based membrane localization and live-dead assay. Our new strategy holds great promise for fabricating cytocompatible antimicrobial assemblies that offer safer and more effective administration of therapeutic AMPs. These assemblies, with intrinsic antimicrobial activity and cytocompatibility, can also serve as building blocks for the construction of higher-ordered scaffolds for other biomedical applications such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | | | | | | |
Collapse
|
49
|
Tanhaeian A, Habibi Najafi MB, Rahnama P, Azghandi M. Production of a Recombinant Peptide (Lasioglossin LL ΙΙΙ) and Assessment of Antibacterial and Antioxidant Activity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Feng P, Wang Z, Yu X. Predicting Antimicrobial Peptides by Using Increment of Diversity with Quadratic Discriminant Analysis Method. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1309-1312. [PMID: 28212093 DOI: 10.1109/tcbb.2017.2669302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides are crucial components of the innate host defense system of most living organisms and promising candidates for antimicrobial agents. Accurate classification of antimicrobial peptides will be helpful to the discovery of new therapeutic targets. In this work, the Increment of Diversity with Quadratic Discriminant analysis (IDQD) was presented to classify antifungal and antibacterial peptides based on primary sequence information. In the jackknife test, the proposed IDQD model yields an accuracy of 86.02 percent with the sensitivity of 74.31 percent and specificity of 92.79 percent for identifying antimicrobial peptides, which is superior to other state-of-the-art methods. This result suggests that the proposed IDQD model can be efficiently used to antimicrobial peptide classification.
Collapse
|