1
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
2
|
Urmann D, Lorenz C, Linker SM, Braun M, Wachtveitl J, Bamann C. Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson. Photochem Photobiol 2017; 93:782-795. [DOI: 10.1111/php.12741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- David Urmann
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Charlotte Lorenz
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Stephanie M. Linker
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Christian Bamann
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| |
Collapse
|
3
|
Eckert CE, Kaur J, Glaubitz C, Wachtveitl J. Ultrafast Photoinduced Deactivation Dynamics of Proteorhodopsin. J Phys Chem Lett 2017; 8:512-517. [PMID: 28072545 DOI: 10.1021/acs.jpclett.6b02975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report femtosecond time-resolved absorption change measurements of the photoinduced deactivation dynamics of a microbial rhodopsin in the ultraviolet-visible and mid-infrared range. The blue light quenching process is recorded in green proteorhodopsin's (GPR) primary proton donor mutant E108Q from the deprotonated 13-cis photointermediate. The return of GPR to the dark state occurs in two steps, starting with the photoinduced 13-cis to all-trans reisomerization of the retinal. The subsequent Schiff base reprotonation via the primary proton acceptor (D97) occurs on a nanosecond time scale. This step is two orders of magnitude faster than that in bacteriorhodopsin, potentially because of the very high pKA of the GPR primary proton acceptor.
Collapse
Affiliation(s)
- C Elias Eckert
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
5
|
Mura C, McAnany CE. An introduction to biomolecular simulations and docking. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.935372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:562-77. [PMID: 23732219 DOI: 10.1016/j.bbabio.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023]
Abstract
Retinal proteins (~rhodopsins) are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices which bind the chromophore retinal (vitamin A aldehyde). They are widely distributed through all three biological kingdoms, eukarya, bacteria and archaea, indicating the biological significance of the retinal proteins. Light absorption by the retinal proteins triggers a photoisomerization of the chromophore, leading to the biological function, light-energy conversion or light-signal transduction. This article reviews molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors and their related proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Japan.
| |
Collapse
|
7
|
Neumann-Verhoefen MK, Neumann K, Bamann C, Radu I, Heberle J, Bamberg E, Wachtveitl J. Ultrafast Infrared Spectroscopy on Channelrhodopsin-2 Reveals Efficient Energy Transfer from the Retinal Chromophore to the Protein. J Am Chem Soc 2013; 135:6968-76. [DOI: 10.1021/ja400554y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mirka-Kristin Neumann-Verhoefen
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Karsten Neumann
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt
am Main, Germany
| | - Ionela Radu
- Department
of Physics, Molecular
Biospectroscopy, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental
Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt
am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Gross R, Wolf MMN, Schumann C, Friedman N, Sheves M, Li L, Engelhard M, Trentmann O, Neuhaus HE, Diller R. Primary photoinduced protein response in bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 2010; 131:14868-78. [PMID: 19778046 DOI: 10.1021/ja904218n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Essential for the biological function of the light-driven proton pump, bacteriorhodopsin (BR), and the light sensor, sensory rhodopsin II (SRII), is the coupling of the activated retinal chromophore to the hosting protein moiety. In order to explore the dynamics of this process we have performed ultrafast transient mid-infrared spectroscopy on isotopically labeled BR and SRII samples. These include SRII in D(2)O buffer, BR in H(2)(18)O medium, SRII with (15)N-labeled protein, and BR with (13)C(14)(13)C(15)-labeled retinal chromophore. Via observed shifts of infrared difference bands after photoexcitation and their kinetics we provide evidence for nonchromophore bands in the amide I and the amide II region of BR and SRII. A band around 1550 cm(-1) is very likely due to an amide II vibration. In the amide I region, contributions of modes involving exchangeable protons and modes not involving exchangeable protons can be discerned. Observed bands in the amide I region of BR are not due to bending vibrations of protein-bound water molecules. The observed protein bands appear in the amide I region within the system response of ca. 0.3 ps and in the amide II region within 3 ps, and decay partially in both regions on a slower time scale of 9-18 ps. Similar observations have been presented earlier for BR5.12, containing a nonisomerizable chromophore (R. Gross et al. J. Phys. Chem. B 2009, 113, 7851-7860). Thus, the results suggest a common mechanism for ultrafast protein response in the artificial and the native system besides isomerization, which could be induced by initial chromophore polarization.
Collapse
Affiliation(s)
- Ruth Gross
- University of Kaiserslautern, Department of Physics, Erwin-Schrodinger-Strasse, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gross R, Schumann C, Wolf MMN, Herbst J, Diller R, Friedman N, Sheves M. Ultrafast Protein Conformational Alterations in Bacteriorhodopsin and Its Locked Analogue BR5.12. J Phys Chem B 2009; 113:7851-60. [PMID: 19422251 DOI: 10.1021/jp810042f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruth Gross
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Schumann
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias M. N. Wolf
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Herbst
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rolf Diller
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Friedman
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Sheves
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Initial reaction dynamics of proteorhodopsin observed by femtosecond infrared and visible spectroscopy. Biophys J 2008; 94:4796-807. [PMID: 18326639 DOI: 10.1529/biophysj.107.125484] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a comparative study using femtosecond pump/probe spectroscopy in the visible and infrared of the early photodynamics of solubilized proteorhodopsin (green absorbing variant) in D(2)O with deprotonated (pD 9.2) and protonated (pD 6.4) primary proton acceptor Asp-97. The vis-pump/vis-probe experiments show a kinetic isotope effect that is more pronounced for alkaline conditions, thus decreasing the previously reported pH-dependence of the primary reaction of proteorhodopsin in H(2)O. This points to a pH dependent H-bonding network in the binding pocket of proteorhodopsin, that directly influences the primary photo-induced dynamics. The vis-pump/IR-probe experiments were carried out in two different spectral regions and allowed to monitor the retinal C=C (1500 cm(-1)-1580 cm(-1)) and C=N stretching vibration as well as the amide I mode of the protein (1590 cm(-1)-1680 cm(-1)). Like the FTIR spectra of the K intermediate (PR(K)-PR difference spectra) in this spectral range, the kinetic parameters and also the quantum efficiency of photo-intermediate formation are found to be virtually independent of the pD value.
Collapse
|
11
|
Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. Biophys J 2008; 94:4020-30. [PMID: 18234812 DOI: 10.1529/biophysj.107.121376] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteorhodopsin is an ion-translocating member of the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization, leading to transmembrane translocation of a proton toward the extracellular side of the cytoplasmic membrane. Here we report a study on the photoisomerization dynamics of the retinal chromophore of proteorhodopsin, using femtosecond time-resolved spectroscopy, by probing in the visible- and in the midinfrared spectral regions. Experiments were performed both at pH 9.5 (a physiologically relevant pH value in which the primary proton acceptor of the protonated Schiff base, Asp(97), is deprotonated) and at pH 6.5 (with Asp(97) protonated). Simultaneous analysis of the data sets recorded in the two spectral regions and at both pH values reveals a multiexponential excited state decay, with time constants of approximately 0.2 ps, approximately 2 ps, and approximately 20 ps. From the difference spectra associated with these dynamics, we conclude that there are two chromophore-isomerization pathways that lead to the K-state: one with an effective rate of approximately (2 ps)(-1) and the other with a rate of approximately (20 ps)(-1). At high pH, both pathways are equally effective, with an estimated quantum yield for K-formation of approximately 0.7. At pH 6.5, the slower pathway is less productive, which results in an isomerization quantum yield of 0.5. We further observe an ultrafast response of residue Asp(227), which forms part of the counterion complex, corresponding to a strengthening of its hydrogen bond with the Schiff base on K-state formation; and a feature that develops on the 0.2 ps and 2 ps timescale and probably reflects a response of an amide II band in reaction to the isomerization process.
Collapse
|
12
|
Subpicosecond midinfrared spectroscopy of the Pfr reaction of phytochrome Agp1 from Agrobacterium tumefaciens. Biophys J 2008; 94:3189-97. [PMID: 18192363 DOI: 10.1529/biophysj.107.119297] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are light-sensing pigments found in plants and bacteria. For the first time, the P(fr) photoreaction of a phytochrome has been subject to ultrafast infrared vibrational spectroscopy. Three time constants of 0.3 ps, 1.3 ps, and 4.0 ps were derived from the kinetics of structurally specific marker bands of the biliverdin chromophore of Agp1-BV from Agrobacterium tumefaciens after excitation at 765 nm. VIS-pump-VIS-probe experiments yield time constants of 0.44 ps and 3.3 ps for the underlying electronic-state dynamics. A reaction scheme is proposed including two kinetic steps on the S(1) excited-state surface and the cooling of a vibrationally hot P(fr) ground state. It is concluded that the upper limit of the E-Z isomerization of the C(15) = C(16) methine bridge is given by the intermediate time constant of 1.3 ps. The reaction scheme is reminiscent of that of the corresponding P(r) reaction of Agp1-BV as published earlier.
Collapse
|
13
|
Amsden JJ, Kralj JM, Chieffo LR, Wang X, Erramilli S, Spudich EN, Spudich JL, Ziegler LD, Rothschild KJ. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction. J Phys Chem B 2007; 111:11824-31. [PMID: 17880126 DOI: 10.1021/jp073490r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport.
Collapse
Affiliation(s)
- Jason J Amsden
- Department of Physics, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|