1
|
Díaz-García C, Hornos F, Giudici AM, Cámara-Artigas A, Luque-Ortega JR, Arbe A, Rizzuti B, Alfonso C, Forwood JK, Iovanna JL, Gómez J, Prieto M, Coutinho A, Neira JL. Human importin α3 and its N-terminal truncated form, without the importin-β-binding domain, are oligomeric species with a low conformational stability in solution. Biochim Biophys Acta Gen Subj 2020; 1864:129609. [PMID: 32234409 DOI: 10.1016/j.bbagen.2020.129609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Eukaryotic cells have a continuous transit of macromolecules between the cytoplasm and the nucleus. Several carrier proteins are involved in this transport. One of them is importin α, which must form a complex with importin β to accomplish its function, by domain-swapping its 60-residue-long N terminus. There are several human isoforms of importin α; among them, importin α3 has a particularly high flexibility. METHODS We studied the conformational stability of intact importin α3 (Impα3) and its truncated form, where the 64-residue-long, N-terminal importin-β-binding domain (IBB) has been removed (ΔImpα3), in a wide pH range, with several spectroscopic, biophysical, biochemical methods and with molecular dynamics (MD). RESULTS Both species acquired native-like structure between pH 7 and 10.0, where Impα3 was a dimer (with an apparent self-association constant of ~10 μM) and ΔImpα3 had a higher tendency to self-associate than the intact species. The acquisition of secondary, tertiary and quaternary structure, and the burial of hydrophobic patches, occurred concomitantly. Both proteins unfolded irreversibly at physiological pH, by using either temperature or chemical denaturants, through several partially folded intermediates. The MD simulations support the presence of these intermediates. CONCLUSIONS The thermal stability of Impα3 at physiological pH was very low, but was higher than that of ΔImpα3. Both proteins were stable in a narrow pH range, and they unfolded at physiological pH populating several intermediate species. GENERAL SIGNIFICANCE The low conformational stability explains the flexibility of Impα3, which is needed to carry out its recognition of complex cargo sequences.
Collapse
Affiliation(s)
- Clara Díaz-García
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Felipe Hornos
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | | | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| | - Juan Román Luque-Ortega
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Materials Physics Center (MPC), 20018 San Sebastián, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| | - Javier Gómez
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Manuel Prieto
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Ana Coutinho
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
3
|
The conserved lid tryptophan, W211, potentiates thermostability and thermoactivity in bacterial thermoalkalophilic lipases. PLoS One 2013; 8:e85186. [PMID: 24391996 PMCID: PMC3877348 DOI: 10.1371/journal.pone.0085186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023] Open
Abstract
We hypothesize that aggregation of thermoalkalophilic lipases could be a thermostability mechanism. The conserved tryptophans (W211, W234) in the lid are of particular interest owing to their previous involvements in aggregation and thermostability mechanisms in many other proteins. The thermoalkalophilic lipase from Bacillus thermocatenulatus (BTL2) and its mutants (W211A, W234A) were expressed and purified to homogeneity. We found that, when aggregated, BTL2 is more thermostable than its non-aggregating form, showing that aggregation potentiates thermostability in the thermoalkalophilic lipase. Among the two lid mutants, the W211A lowered aggregation tendency drastically and resulted in a much less thermostable variant of BTL2, which indicated that W211 stabilizes the intermolecular interactions in BTL2 aggregates. Further thermoactivity and CD spectroscopy analyses showed that W211A also led to a strong decrease in the optimal and the melting temperature of BTL2, implying stabilization by W211 also to the intramolecular interactions. The other lid mutant W234A had no effects on these properties. Finally, we analyzed the molecular basis of these experimental findings in-silico using the dimer (PDB ID: 1KU0) and the monomer (PDB ID: 2W22) lipase structures. The computational analyses confirmed that W211 stabilized the intermolecular interactions in the dimer lipase and it is critical to the stability of the monomer lipase. Explicitly W211 confers stability to the dimer and the monomer lipase through distinct aromatic interactions with Y273-Y282 and H87-P232 respectively. The insights revealed by this work shed light not only on the mechanism of thermostability and its relation to aggregation but also on the particular role of the conserved lid tryptophan in the thermoalkalophilic lipases.
Collapse
|
4
|
Kayser V, Chennamsetty N, Voynov V, Helk B, Trout BL. Conformational stability and aggregation of therapeutic monoclonal antibodies studied with ANS and Thioflavin T binding. MAbs 2011; 3:408-11. [PMID: 21540645 DOI: 10.4161/mabs.3.4.15677] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Characterization of aggregation profiles of monoclonal antibodies (mAb) is gaining importance because an increasing number of mAb-based therapeutics are entering clinical studies and gaining marketing approval. To develop a successful formulation, it is imperative to identify the critical biochemical properties of each potential mAb drug candidate. We investigated the conformational change and aggregation of a human IgG1 using external dye-binding experiments with fluorescence spectroscopy and compared the aggregation profiles obtained to the results of size-exclusion chromatography. We show that using an appropriate dye at selected mAb concentration, unfolding or aggregation can be studied. In addition, dye-binding experiments may be used as conventional assays to study therapeutic mAb stability.
Collapse
Affiliation(s)
- Veysel Kayser
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature.
Collapse
Affiliation(s)
- Kemper Talley
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina 29634, USA
| | | |
Collapse
|
6
|
Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK. Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 2010; 131:15711-6. [PMID: 19810726 DOI: 10.1021/ja9046697] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Reinau ME, Otzen DE. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids. Arch Biochem Biophys 2009; 492:48-53. [PMID: 19800309 DOI: 10.1016/j.abb.2009.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
The cytosolic protein Ffh transports membrane proteins from the ribosome to the inner membrane in complex with 4.5S RNA. Here we show that native Ffh binds to the hydrophobic probe ANS in a 1 Ffh:3 ANS stoichiometry, revealing a hydrophobic binding site. Thermal precipitation of Ffh is shifted upwards by approximately 10 degrees C by ANS or substrate protein, suggesting that the hydrophobic binding site makes the protein aggregation prone. Chemical denaturation confirm that Ffh is a rather unstable protein. 4.5S RNA destabilizes Ffh further, suggesting it keeps the protein in a more open conformation than the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's alpha-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude that Ffh is a structurally flexible and dynamic protein whose stability is significantly modulated by the environment.
Collapse
Affiliation(s)
- Marika E Reinau
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | |
Collapse
|
8
|
Baptista RP, Pedersen S, Cabrita GJM, Otzen DE, Cabral JMS, Melo EP. Thermodynamics and mechanism of cutinase stabilization by trehalose. Biopolymers 2008; 89:538-47. [PMID: 18213692 DOI: 10.1002/bip.20926] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trehalose has been widely used to stabilize cellular structures such as membranes and proteins. The effect of trehalose on the stability of the enzyme cutinase was studied. Thermal unfolding of cutinase reveals that trehalose delays thermal unfolding, thus increasing the temperature at the midpoint of unfolding by 7.2 degrees . Despite this stabilizing effect, trehalose also favors pathways that lead to irreversible denaturation. Stopped-flow kinetics of cutinase folding and unfolding was measured and temperature was introduced as experimental variable to assess the mechanism and thermodynamics of protein stabilization by trehalose. The main stabilizing effect of trehalose was to delay the rate constant of the unfolding of an intermediate. A full thermodynamic analysis of this step has revealed that trehalose induces the phenomenon of entropy-enthalpy compensation, but the enthalpic contribution increases more significantly leading to a net stabilizing effect that slows down unfolding of the intermediate. Regarding the molecular mechanism of stabilization, trehalose increases the compactness of the unfolded state. The conformational space accessible to the unfolded state decreases in the presence of trehalose when the unfolded state acquires residual native interactions that channel the folding of the protein. This residual structure results into less hydrophobic groups being newly exposed upon unfolding, as less water molecules are immobilized upon unfolding.
Collapse
Affiliation(s)
- Ricardo P Baptista
- Institute of Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | | | | | | | | | | |
Collapse
|
11
|
Otzen DE, Giehm L, Baptista RP, Kristensen SR, Melo EP, Pedersen S. Aggregation as the basis for complex behaviour of cutinase in different denaturants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:323-33. [PMID: 17208524 DOI: 10.1016/j.bbapap.2006.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/12/2006] [Accepted: 11/27/2006] [Indexed: 11/17/2022]
Abstract
We have previously described the complexity of the folding of the lipolytic enzyme cutinase from F. solani pisi in guanidinium chloride. Here we extend the refolding analysis by refolding from the pH-denatured state and analyze the folding behaviour in the presence of the weaker denaturant urea and the stronger denaturant guanidinium thiocyanate. In urea there is excellent consistency between equilibrium and kinetic data, and the intermediate accumulating at low denaturant concentrations is off-pathway. However, in GdmCl, refolding rates, and consequently the stability of the native state, vary significantly depending on whether refolding takes place from the pH- or GdmCl-denatured state, possibly due to transient formation of aggregates during folding from the GdmCl-denatured state. In GdmSCN, stability is reduced by several kcal/mol with significant aggregation in the unfolding transition region. The basis for the large variation in folding behaviour may be the denaturants' differential ability to support formation of exposed hydrophobic regions and consequent changes in aggregative properties during refolding.
Collapse
Affiliation(s)
- Daniel E Otzen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, Aalborg DK- 9000, Denmark.
| | | | | | | | | | | |
Collapse
|