1
|
Kovács D, Bodor A. The influence of random-coil chemical shifts on the assessment of structural propensities in folded proteins and IDPs. RSC Adv 2023; 13:10182-10203. [PMID: 37006359 PMCID: PMC10065145 DOI: 10.1039/d3ra00977g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
In studying secondary structural propensities of proteins by nuclear magnetic resonance (NMR) spectroscopy, secondary chemical shifts (SCSs) serve as the primary atomic scale observables. For SCS calculation, the selection of an appropriate random coil chemical shift (RCCS) dataset is a crucial step, especially when investigating intrinsically disordered proteins (IDPs). The scientific literature is abundant in such datasets, however, the effect of choosing one over all the others in a concrete application has not yet been studied thoroughly and systematically. Hereby, we review the available RCCS prediction methods and to compare them, we conduct statistical inference by means of the nonparametric sum of ranking differences and comparison of ranks to random numbers (SRD-CRRN) method. We try to find the RCCS predictors best representing the general consensus regarding secondary structural propensities. The existence and the magnitude of resulting differences on secondary structure determination under varying sample conditions (temperature, pH) are demonstrated and discussed for globular proteins and especially IDPs.
Collapse
Affiliation(s)
- Dániel Kovács
- ELTE, Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory Pázmány Péter sétány 1/A Budapest 1117 Hungary
- Eötvös Loránd University, Hevesy György PhD School of Chemistry Pázmány Péter sétány 1/A Budapest 1117 Hungary
| | - Andrea Bodor
- ELTE, Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory Pázmány Péter sétány 1/A Budapest 1117 Hungary
| |
Collapse
|
2
|
Li X, Sabol AL, Wierzbicki M, Salveson PJ, Nowick JS. An Improved Turn Structure for Inducing β‐Hairpin Formation in Peptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xingyue Li
- Department of Chemistry University of California Irvine 4126 Natural Sciences I Irvine CA 92697-2025 USA
| | - Andrew L. Sabol
- Department of Chemistry University of California Irvine 4126 Natural Sciences I Irvine CA 92697-2025 USA
| | - Michał Wierzbicki
- Department of Chemistry University of California Irvine 4126 Natural Sciences I Irvine CA 92697-2025 USA
| | - Patrick J. Salveson
- Department of Chemistry University of California Irvine 4126 Natural Sciences I Irvine CA 92697-2025 USA
| | - James S. Nowick
- Department of Chemistry University of California Irvine 4126 Natural Sciences I Irvine CA 92697-2025 USA
- Department of Pharmaceutical Sciences University of California Irvine 4126 Natural Sciences I Irvine CA 92697-2025 USA
| |
Collapse
|
3
|
Li X, Sabol AL, Wierzbicki M, Salveson PJ, Nowick JS. An Improved Turn Structure for Inducing β-Hairpin Formation in Peptides. Angew Chem Int Ed Engl 2021; 60:22776-22782. [PMID: 34258835 DOI: 10.1002/anie.202105559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/14/2021] [Indexed: 11/05/2022]
Abstract
Although β-hairpins are widespread in proteins, there is no tool to coax any small peptide to adopt a β-hairpin conformation, regardless of sequence. Here, we report that δ-linked γ(R)-methyl-ornithine (δ MeOrn) provides an improved β-turn template for inducing a β-hairpin conformation in peptides. We developed a synthesis of protected δ MeOrn as a building block suitable for use in Fmoc-based solid-phase peptide synthesis. The synthesis begins with l-leucine and affords gram quantities of the Nα -Boc-Nδ -Fmoc-γ(R)-methyl-ornithine building block. X-ray crystallography confirms that the δ MeOrn turn unit adopts a folded structure in a macrocyclic β-hairpin peptide. CD and NMR spectroscopy allow comparison of the δ MeOrn turn template to the δ-linked ornithine (δ Orn) turn template that we previously introduced and to the popular d-Pro-Gly turn template. These studies show that the folding of the δ MeOrn turn template is substantially better than that of δ Orn and is comparable to d-Pro-Gly.
Collapse
Affiliation(s)
- Xingyue Li
- Department of Chemistry, University of California Irvine, 4126 Natural Sciences I, Irvine, CA, 92697-2025, USA
| | - Andrew L Sabol
- Department of Chemistry, University of California Irvine, 4126 Natural Sciences I, Irvine, CA, 92697-2025, USA
| | - Michał Wierzbicki
- Department of Chemistry, University of California Irvine, 4126 Natural Sciences I, Irvine, CA, 92697-2025, USA
| | - Patrick J Salveson
- Department of Chemistry, University of California Irvine, 4126 Natural Sciences I, Irvine, CA, 92697-2025, USA
| | - James S Nowick
- Department of Chemistry, University of California Irvine, 4126 Natural Sciences I, Irvine, CA, 92697-2025, USA.,Department of Pharmaceutical Sciences, University of California Irvine, 4126 Natural Sciences I, Irvine, CA, 92697-2025, USA
| |
Collapse
|
4
|
Karpowicz P, Osmulski PA, Witkowska J, Sikorska E, Giżyńska M, Belczyk-Ciesielska A, Gaczynska ME, Jankowska E. Interplay between Structure and Charge as a Key to Allosteric Modulation of Human 20S Proteasome by the Basic Fragment of HIV-1 Tat Protein. PLoS One 2015; 10:e0143038. [PMID: 26575189 PMCID: PMC4648528 DOI: 10.1371/journal.pone.0143038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022] Open
Abstract
The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4-5 and 8-9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8-9 position was necessary to significantly improve the inhibitory potency.
Collapse
Affiliation(s)
- Przemysław Karpowicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Paweł A. Osmulski
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Julia Witkowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Giżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Maria E. Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Henry B, Gizzi P, Delpuech JJ. Magnetic non-equivalence and dynamic NMR of N-methylene protons in a Histamine-containing pseudopeptide: Alanyl-Glycyl-Histamine. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Jung YS, Oh KI, Hwang GS, Cho M. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins. Chirality 2014; 26:443-52. [PMID: 24453185 DOI: 10.1002/chir.22285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022]
Abstract
For nuclear magnetic resonance (NMR)-based protein structure determinations, the random coil chemical shifts are very important because the secondary and tertiary protein structure predictions become possible by examining deviations of measured chemical shifts from those reference chemical shift values. In addition, neighboring residue effects on chemical shifts and J-coupling constants are crucial in understanding the nature of conformational propensities exhibited by unfolded or intrinsically disordered proteins. We recently reported the 1D NMR results for a complete set of terminally blocked dipeptides (Oh KI, Jung YS, Hwang GS, Cho M. J Biomol NMR 2012;53:25-41), but the NMR resonance assignments were not possible so that the average chemical shifts and J-coupling constants were only considered. In the present work, to thoroughly investigate the neighboring residue effects and random coil chemical shifts we extend the previous studies with 2D NMR, and measured all the (3) J(HNHα) values and H(α) and H(N) chemical shifts of the same set of terminally blocked dipeptides that are free from structural effects like secondary structure, hydrogen-bond, long-range backbone, and side-chain interactions. In particular, the preceding and following residue effects on amino-acid backbone conformational propensities are revealed and directly compared with previous works on either short peptides or empirical chemical shift database.
Collapse
|
7
|
Leclerc J, Lefèvre T, Pottier F, Morency LP, Lapointe-Verreault C, Gagné SM, Auger M. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution. Biopolymers 2011; 97:337-46. [DOI: 10.1002/bip.21717] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/31/2011] [Indexed: 11/07/2022]
|
8
|
Wishart DS. Interpreting protein chemical shift data. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:62-87. [PMID: 21241884 DOI: 10.1016/j.pnmrs.2010.07.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/29/2010] [Indexed: 05/12/2023]
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, National Institute for Nanotechnology (NINT), Edmonton, AB, Canada T6G 2E8.
| |
Collapse
|