1
|
Moeckel C, Mareboina M, Konnaris MA, Chan CS, Mouratidis I, Montgomery A, Chantzi N, Pavlopoulos GA, Georgakopoulos-Soares I. A survey of k-mer methods and applications in bioinformatics. Comput Struct Biotechnol J 2024; 23:2289-2303. [PMID: 38840832 PMCID: PMC11152613 DOI: 10.1016/j.csbj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxwell A. Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Candace S.Y. Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Velashjerdi Farahani S, Reza Aghasadeghi M, Memarnejadian A, Faezi S, Shahosseini Z, Mahdavi M. Naloxone/alum mixture a potent adjuvant for HIV-1 vaccine: induction of cellular and poly-isotypic humoral immune responses. Pathog Glob Health 2016; 110:39-47. [PMID: 26403975 DOI: 10.1179/2047773215y.0000000035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the present study we used a fusion peptide from HIV-1 p24 and Nef as vaccine model and adjuvant activity of Naloxone/alum mixture was evaluated in a peptide vaccine model. HIV-1 p24-Nef fusion peptide was synthesized. Female BALB/c mice were divided into five groups. The first group immunized subcutaneously with the p24-Nef fusion peptide adjuvanted with Naloxone/alum mixture and boosted with same protocol. The second was immunized with fusion peptide adjuvanted in alum. The control groups were injected with NLX (Group 3), Alum (Group 4), or PBS (Groups 5) under the same conditions. To determine the type of induced immune response, sera and splenocytes were analyzed by commercial ELISA method for total IgG and isotypes and cytokine secretion (IL-4 & IFN-γ), respectively. We have also used the ELISPOT assay to monitor changes in the frequency of IFN-γ-producing T cells. The proliferation of T cells was assessed using Brdu method and T-cell cytotoxicity was assessed with CFSE method. Immunization of mice with HIV-1 p24-Nef fusion peptide formulated in Naloxone/alum mixture significantly increased lymphocyte proliferation and shifted cytokine responses toward Th1 profile compared to all other groups. Analysis of humoral immune responses revealed that administration of HIV-1 p24-Nef fusion peptide with Naloxone/alum mixture significantly increased specific IgG responses and also increased IgG1,IgG2a, IgG2b, IgG3, and IgM vs. alum-adjuvanted vaccine groups. Naloxone/alum mixture as an adjuvant could improve cellular and humoral immune response for HIV vaccine model and this adjuvant maybe useful for HIV vaccine model in human clinical trial.
Collapse
Affiliation(s)
- Sima Velashjerdi Farahani
- a Department of Immunology , Pasteur Institute of Iran , Tehran , Iran.,b Faculty of Sciences, Department of Microbiology , Zanjan Islamic Azad University , Zanjan , Iran
| | | | - Arash Memarnejadian
- c Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Sobhan Faezi
- d Department of Mycobacteriology and Pulmonary Research , Pasteur Institute of Iran , Tehran , Iran
| | - Zahra Shahosseini
- e Department of Virology , Pasteur Institute of Iran , Tehran , Iran
| | - Mehdi Mahdavi
- a Department of Immunology , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
3
|
Pentier JM, Sewell AK, Miles JJ. Advances in T-cell epitope engineering. Front Immunol 2013; 4:133. [PMID: 23761792 PMCID: PMC3672776 DOI: 10.3389/fimmu.2013.00133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
- Johanne M Pentier
- Institute of Infection and Immunity, Cardiff University School of Medicine Heath Park, Cardiff, Wales, UK
| | | | | |
Collapse
|
4
|
Birnbaum ME, Dong S, Garcia KC. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function. Immunol Rev 2013; 250:82-101. [PMID: 23046124 DOI: 10.1111/imr.12006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular diversity lies at the heart of adaptive immunity. T-cell receptors and peptide-major histocompatibility complex molecules utilize and rely upon an enormous degree of diversity at the levels of genetics, chemistry, and structure to engage one another and carry out their functions. This high level of diversity complicates the systematic study of important aspects of T-cell biology, but recent technical advances have allowed for the ability to study diversity in a comprehensive manner. In this review, we assess insights gained into T-cell receptor function and biology from our increasingly precise ability to assess the T-cell repertoire as a whole or to perturb individual receptors with engineered reagents. We conclude with a perspective on a new class of high-affinity, non-stimulatory peptide ligands we have recently discovered using diversity-oriented techniques that challenges notions for how we think about T-cell receptor signaling.
Collapse
Affiliation(s)
- Michael E Birnbaum
- Department of Molecular and Cellular Physiology, Program in Immunology, Stanford University School of Medicine, CA, USA
| | | | | |
Collapse
|
5
|
Pentamers not found in the universal proteome can enhance antigen specific immune responses and adjuvant vaccines. PLoS One 2012; 7:e43802. [PMID: 22937099 PMCID: PMC3427150 DOI: 10.1371/journal.pone.0043802] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022] Open
Abstract
Certain short peptides do not occur in humans and are rare or non-existent in the universal proteome. Antigens that contain rare amino acid sequences are in general highly immunogenic and may activate different arms of the immune system. We first generated a list of rare, semi-common, and common 5-mer peptides using bioinformatics tools to analyze the UniProtKB database. Experimental observations indicated that rare and semi-common 5-mers generated stronger cellular responses in comparison with common-occurring sequences. We hypothesized that the biological process responsible for this enhanced immunogenicity could be used to positively modulate immune responses with potential application for vaccine development. Initially, twelve rare 5-mers, 9-mers, and 13-mers were incorporated in frame at the end of an H5N1 hemagglutinin (HA) antigen and expressed from a DNA vaccine. The presence of some 5-mer peptides induced improved immune responses. Adding one 5-mer peptide exogenously also offered improved clinical outcome and/or survival against a lethal H5N1 or H1N1 influenza virus challenge in BALB/c mice and ferrets, respectively. Interestingly, enhanced anti-HBsAg antibody production by up to 25-fold in combination with a commercial Hepatitis B vaccine (Engerix-B, GSK) was also observed in BALB/c mice. Mechanistically, NK cell activation and dependency was observed with enhancing peptides ex vivo and in NK-depleted mice. Overall, the data suggest that rare or non-existent oligopeptides can be developed as immunomodulators and supports the further evaluation of some 5-mer peptides as potential vaccine adjuvants.
Collapse
|