1
|
Bozelli JC, Salay LC, Arcisio-Miranda M, Procopio J, Riciluca KCT, Silva Junior PI, Nakaie CR, Schreier S. A comparison of activity, toxicity, and conformation of tritrpticin and two TOAC-labeled analogues. Effects on the mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183110. [PMID: 31672543 DOI: 10.1016/j.bbamem.2019.183110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 02/01/2023]
Abstract
A strategy that has been gaining increased application for the study of the conformation, dynamics, orientation, and physicochemical properties of peptides is labeling with the paramagnetic amino acid TOAC. This approach was used to gain a deeper understanding on the mechanism of action of the antimicrobial peptide tritrpticin (TRP3). TRP3 was labeled with TOAC at the N-terminus (prior to V1, TOAC0-TRP3) or internally (replacing P5, TOAC5-TRP3). Functional studies showed that labeling led to peptides with higher activity against Gram-positive bacteria and lower hemolytic activity with respect to TRP3. Peptide-induced model membranes permeabilization and ion channel-like activity studies corroborated the functional assays qualitatively, showing higher activity of the peptides against negatively charged membranes, which had the purpose of mimicking bacterial membranes. TOAC presented a greater freedom of motion at the N-terminus than at the internal position, as evinced by EPR spectra. EPR and fluorescence spectra reported on the peptides conformational properties, showing acquisition of a more packed conformation in the presence of the secondary structure-inducing solvent, TFE. CD studies showed that TOAC0-TRP3 acquires a conformation similar to that of TRP3, both in aqueous solution and in TFE, while TOAC5-TRP3 presents a different conformation in all environments. While the mechanism of action of TRP3 was impacted to some extent by TOAC labeling at the N-terminus, it did change upon replacement of P5 by TOAC. The results demonstrated that TOAC-labeling could be used to modulate TRP3 activity and mechanism of action and, more importantly, the critical role of P5 for TRP3 pore formation.
Collapse
Affiliation(s)
- José C Bozelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil; Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada.
| | - Luiz C Salay
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil; Department of Exact and Technological Sciences, State University of Santa Cruz-UESC, Ilhéus, BA 45662-900, Brazil
| | - Manoel Arcisio-Miranda
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, SP 05508-000, Brazil
| | - Joaquim Procopio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, SP 05508-000, Brazil
| | - Katie C T Riciluca
- Laboratory for Applied Toxinology, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Pedro I Silva Junior
- Laboratory for Applied Toxinology, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Teixeira LGD, Malavolta L, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Paramagnetic bradykinin analogues as substrates for angiotensin I-converting enzyme: Pharmacological and conformation studies. Bioorg Chem 2016; 69:159-166. [PMID: 27837711 DOI: 10.1016/j.bioorg.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 11/27/2022]
Abstract
This study uses EPR, CD, and fluorescence spectroscopy to examine the structure of bradykinin (BK) analogues attaching the paramagnetic amino acid-type Toac (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 3, 7, and 9. The data were correlated with the potencies in muscle contractile experiments and the substrate properties towards the angiotensin I-converting enzyme (ACE). A study of the biological activities in guinea pig ileum and rat uterus indicated that only Toac0-BK partially maintained its native biological potency among the tested peptides. This and its counterpart, Toac3-BK, maintained the ability to act as ACE substrates. These results indicate that peptides bearing Toac probe far from the ACE cleavage sites were more susceptible to hydrolysis by ACE. The results also emphasize the existence of a finer control for BK-receptor interaction than for BK binding at the catalytic site of this metallodipetidase. The kinetic kcat/Km values decreased from 202.7 to 38.9μM-1min-1 for BK and Toac3-BK, respectively. EPR, CD, and fluorescence experiments reveal a direct relationship between the structure and activity of these paramagnetic peptides. In contrast to the turn-folded structures of the Toac-internally labeled peptides, more extended conformations were displayed by N- or C-terminally Toac-labeled analogues. Lastly, this work supports the feasibility of monitoring the progress of the ACE-hydrolytic process of Toac-attached peptides by examining time-dependent EPR spectral variations.
Collapse
Affiliation(s)
- Luis Gustavo Deus Teixeira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo, School of Medical Sciences, 01221-020 Sao Paulo, SP, Brazil
| | | | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, Universidade de Sao Paulo, 05513-970 Sao Paulo, SP, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil.
| |
Collapse
|
3
|
Teixeira LGD, Malavolta L, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Conformational Properties of Seven Toac-Labeled Angiotensin I Analogues Correlate with Their Muscle Contraction Activity and Their Ability to Act as ACE Substrates. PLoS One 2015; 10:e0136608. [PMID: 26317625 PMCID: PMC4552746 DOI: 10.1371/journal.pone.0136608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra.
Collapse
Affiliation(s)
- Luis Gustavo D Teixeira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Sao Paulo, Brazil
| | - Patrícia A Bersanetti
- Department of Health and Informatics, Universidade Federal de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Vicente EF, Sahu ID, Costa-Filho AJ, Cilli EM, Lorigan GA. Conformational changes of the HsDHODH N-terminal Microdomain via DEER Spectroscopy. J Phys Chem B 2015; 119:8693-7. [PMID: 26086954 DOI: 10.1021/acs.jpcb.5b01706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The human enzyme dihydroorotate dehydrogenase (HsDHODH) has been studied for being a target for development of new antineoplasic and antiproliferative drugs. The synthetic peptide N-t(DH) represents the N-terminal microdomain of this enzyme, responsible for anchoring it to the inner mitochondrial membrane. Also, it is known to harbor quinones that are essential for enzyme catalysis. Here we report structural features of the peptide/membrane interactions obtained by using CD and DEER spectroscopic techniques, both in micelles and in lipid vesicles. The data revealed different peptide conformational states in micelles and liposomes, which could suggest that this microdomain acts in specific regions or areas of the mitochondria, which can be related with the control of the quinone access to the HsDHODH active site. This is the first study to report on conformational changes of the HsDHODH N-terminal microdomain through a combination of CD and DEER spectroscopic techniques.
Collapse
Affiliation(s)
- Eduardo F Vicente
- †UNESP - Univ Estadual Paulista, Campus de Tupã, 17602-496, Tupã, SP Brazil
| | - Indra D Sahu
- ‡Department of Chemistry and Biochemistry, Miami University, 45056, Oxford, Ohio United States
| | - Antonio J Costa-Filho
- §Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - USP,14040-901, Ribeirão Preto, SP Brazil
| | - Eduardo M Cilli
- ∥Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista, 14800-900, Araraquara, SP Brazil
| | - Gary A Lorigan
- ‡Department of Chemistry and Biochemistry, Miami University, 45056, Oxford, Ohio United States
| |
Collapse
|
5
|
Interaction of cyclic and linear Labaditin peptides with anionic and zwitterionic micelles. J Colloid Interface Sci 2015; 438:39-46. [PMID: 25454423 DOI: 10.1016/j.jcis.2014.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/31/2023]
Abstract
Conformational changes of the cyclic (Lo) peptide Labaditin (VWTVWGTIAG) and its linear analogue (L1) promoted by presence of anionic sodium dodecyl sulfate (SDS) and zwitterionic L-α-Lysophosphatidylcholine (LPC) micelles were investigated. Results from λ(max) blue-shift of tryptophan fluorescence emission combined with Stern-Volmer constants values and molecular dynamics (MD) simulations indicated that L1 interacts with SDS micelles to a higher extent than does Lo. Further, the MD simulation demonstrated that both Lo and L1 interact similarly with LPC micelles, being preferentially located at the micelle/water interface. The peptide-micelle interaction elicits conformational changes in the peptides. Lo undergoes limited modifications and presents unordered structure in both LPC and SDS micelles. On the other hand, L1 displays a random-coil structure in aqueous medium, pH 7.0, and it acquires a β-structure upon interaction with SDS and LPC, albeit with structural differences in each medium.
Collapse
|
6
|
Vicente EF, Basso LGM, Cespedes GF, Lorenzón EN, Castro MS, Mendes-Giannini MJS, Costa-Filho AJ, Cilli EM. Dynamics and conformational studies of TOAC spin labeled analogues of Ctx(Ile(21))-Ha peptide from Hypsiboas albopunctatus. PLoS One 2013; 8:e60818. [PMID: 23585852 PMCID: PMC3621989 DOI: 10.1371/journal.pone.0060818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile(21))-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC(13)]Ctx(Ile(21))-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile(21))-Ha and [TOAC(13)]Ctx(Ile(21))-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC(0)]Ctx(Ile(21))-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC(2) and TOAC(13) derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane.
Collapse
Affiliation(s)
- Eduardo F. Vicente
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Luis Guilherme M. Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - Graziely F. Cespedes
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Esteban N. Lorenzón
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Mariana S. Castro
- Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília/DF, Brazil
| | - Maria José S. Mendes-Giannini
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Antonio José Costa-Filho
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto/SP, Brazil
| | - Eduardo M. Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| |
Collapse
|
7
|
Vieira RDFF, Nardi DT, Nascimento N, Rosa JC, Nakaie CR. Peptide Structure Modifications: Effect of Radical Species Generated by Controlled Gamma Ray Irradiation Approach. Biol Pharm Bull 2013; 36:664-75. [DOI: 10.1248/bpb.b12-01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Daniela Teves Nardi
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo
| | - Nanci Nascimento
- Nuclear and Energy Research Institute (IPEN), University of Sao Paulo (USP)
| | - José César Rosa
- Protein Chemistry Center and Department of Molecular and Cell Biology, Ribeirao Preto Medical School, University of Sao Paulo (USP)
| | | |
Collapse
|
8
|
Short peptide constructs mimic agonist sites of AT(1)R and BK receptors. Amino Acids 2012; 44:835-46. [PMID: 23096780 DOI: 10.1007/s00726-012-1405-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Extracellular peptide ligand binding sites, which bind the N-termini of angiotensin II (AngII) and bradykinin (BK) peptides, are located on the N-terminal and extracellular loop 3 regions of the AT(1)R and BKRB(1) or BKRB(2) G-protein-coupled receptors (GPCRs). Here we synthesized peptides P15 and P13 corresponding to these receptor fragments and showed that only constructs in which these peptides were linked by S-S bond, and cyclized by closing the gap between them, could bind agonists. The formation of construct-agonist complexes was revealed by electron paramagnetic resonance spectra and fluorescence measurements of spin labeled biologically active analogs of AngII and BK (Toac(1)-AngII and Toac(0)-BK), where Toac is the amino acid-type paramagnetic and fluorescence quencher 2, 2, 6, 6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid. The inactive derivatives Toac(3)-AngII and Toac(3)-BK were used as controls. The interactions characterized by a significant immobilization of Toac and quenching of fluorescence in complexes between agonists and cyclic constructs were specific for each system of peptide-receptor construct assayed since no crossed reactions or reaction with inactive peptides could be detected. Similarities among AT, BKR, and chemokine receptors were identified, thus resulting in a configuration for AT(1)R and BKRB cyclic constructs based on the structure of the CXCR(4), an α-chemokine GPCR-type receptor.
Collapse
|
9
|
Deleon KY, Patel AP, Kuczera K, Johnson CK, Jas GS. Structure and reorientational dynamics of angiotensin I and II: a microscopic physical insight. J Biomol Struct Dyn 2012; 29:671-90. [PMID: 22545998 DOI: 10.1080/07391102.2011.672631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present a study of structural analysis and reorientational dynamics of Angiotensin I (AngI) and Angiotensin II (AngII) in aqueous solution. AngI is a decapeptide that acts as a precursor to the octapeptide AngII in the Renin-Angiotensin-Aldosterone system for blood pressure regulation. Experimental structural characterization of these peptides, carried out with circular dichroism and infrared spectroscopy, showed that the angiotensins are mostly disordered but exhibit a measurable population of ordered structures at room temperature. Interestingly, these change from the unordered polyproline-like conformation for AngI to a more compact and ordered conformation for AngII as the length of the peptide is decreased. Anisotropy decay measurements with picosecond time resolution indicate slower overall tumbling and a greater amplitude of internal motion in AngI compared to AngII, consistent with more compact and less flexible structure of the active form of the peptide. To model the microscopic behavior of the peptides, 2-μs molecular dynamics simulation trajectories were generated for AngI and AngII, at 300 K using the OPLS-AA potential and SPC water. The structures sampled in the simulations mostly agree with the experimental results, showing the prevalence of disordered structures, turns, and polyproline helices. Additionally, the computational results predict fewer sampled conformations, tighter side-chain packing and marked increase of Phe8 solvent accessibility upon AngI truncation to AngII. Our combined approach of experiment and extensive computer simulation thus yields new information on the conformational dynamics of the angiotensins, helping provide insight into the structural basis for the potency of AngI relative to AngII.
Collapse
Affiliation(s)
- Kristi Y Deleon
- Department of Chemistry, Biochemistry, Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | | | | | | | | |
Collapse
|
10
|
The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects. Biophys Rev 2012; 4:45-66. [PMID: 22347893 PMCID: PMC3271205 DOI: 10.1007/s12551-011-0064-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023] Open
Abstract
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.
Collapse
|
11
|
Nardi DT, Rosa JC, Jubilut GN, Miranda A, Nascimento N, Nakaie CR. Gamma Ray Irradiation of the Vasoactive Peptide Bradykinin Reveals a Residue- and Position-Dependent Structural Modification. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|