1
|
Wang X, Jin K. Robust Chemical Synthesis of "Difficult Peptides" via 2-Hydroxyphenol-pseudoproline (ψ 2-hydroxyphenolpro) Modifications. J Org Chem 2024; 89:3143-3149. [PMID: 38373048 DOI: 10.1021/acs.joc.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The challenging preparation of "difficult peptides" has always hindered the development of peptide-active pharmaceutical ingredients. Pseudoproline (ψpro) building blocks have been proven effective and powerful tools for the synthesis of "difficult peptides". In this paper, we efficiently prepared a set of novel 2-(oxazolidin-2-yl)phenol compounds as proline surrogates (2-hydroxyphenol-pseudoprolines, ψ2-hydroxyphenolpro) and applied it in the synthesis of many well-known "difficult peptides", including human thymosin α1, amylin, and β-amyloid (1-42) (Aβ42).
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
2
|
Hong ZZ, Yu RR, Zhang X, Webb AM, Burge NL, Poirier MG, Ottesen JJ. Development of Convergent Hybrid Phase Ligation for Efficient and Convenient Total Synthesis of Proteins. Pept Sci (Hoboken) 2023; 115:e24323. [PMID: 37692919 PMCID: PMC10488053 DOI: 10.1002/pep2.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023]
Abstract
Simple and efficient total synthesis of homogeneous and chemically modified protein samples remains a significant challenge. Here, we report development of a convergent hybrid phase native chemical ligation (CHP-NCL) strategy for facile preparation of proteins. In this strategy, proteins are split into ~100-residue blocks, and each block is assembled on solid support from synthetically accessible peptide fragments before ligated together into full-length protein in solution. With the new method, we increase the yield of CENP-A synthesis by 2.5-fold compared to the previous hybrid phase ligation approach. We further extend the new strategy to the total chemical synthesis of 212-residue linker histone H1.2 in unmodified, phosphorylated, and citrullinated forms, each from eight peptide segments with only one single purification. We demonstrate that fully synthetic H1.2 replicates the binding interactions of linker histones to intact mononucleosomes, as a proxy for the essential function of linker histones in the formation and regulation of higher order chromatin structure.
Collapse
Affiliation(s)
- Ziyong Z. Hong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Ruixuan R. Yu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Xiaoyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Allison M. Webb
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Nathaniel L. Burge
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Michael G. Poirier
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
- Department of Physics, Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Jennifer J. Ottesen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
3
|
Tanaka S, Narumi T, Mase N, Sato K. Hydrazide-Mediated Solubilizing Strategy for Poorly Soluble Peptides Using a Dialkoxybenzaldehyde Linker. Chem Pharm Bull (Tokyo) 2022; 70:707-715. [PMID: 36184453 DOI: 10.1248/cpb.c22-00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins modified in a controlled manner with artificial moieties such as fluorophores or affinity tags have been shown to be a powerful tool for functional or structural analysis of proteins. A reliable way to prepare proteins with a well-defined modification is protein synthesis. Although many successful syntheses have been reported, the poor aqueous solubility of synthetic intermediates causes difficulty in the chemical synthesis of proteins. Here we describe a solubilizing strategy for poorly soluble peptides which uses chemoselective incorporation of a hydrophilic tag onto a hydrazide in a peptide. We found that a hydrophilic tag possessing a dialkoxybenzaldehyde moiety can react with peptide hydrazides through reductive N-alkylation. No protecting groups are required for this reaction, and peptides modified in this way show enhanced solubility and consequently good peak separation during HPLC purification. The tag can be removed subsequently by treatment with trifluoroacetic acid to generate a free hydrazide, which can be converted in a one-pot reaction to a thioester for further modification. This method was validated by synthesis of a Lys63-linked ubiquitin dimer derivative. This late-stage solubilization can be applied in principal to any peptide and opens the possibility of the synthesis of proteins that have previously been considered inaccessible due to their poor solubility.
Collapse
Affiliation(s)
- Shoko Tanaka
- Graduate School of Science and Technology, Shizuoka University
| | - Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
4
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
5
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
6
|
Sato K, Tanaka S, Wang J, Ishikawa K, Tsuda S, Narumi T, Yoshiya T, Mase N. Late-Stage Solubilization of Poorly Soluble Peptides Using Hydrazide Chemistry. Org Lett 2021; 23:1653-1658. [PMID: 33570416 DOI: 10.1021/acs.orglett.1c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel late-stage solubilization of peptides using hydrazides is described. A solubilizing tag was attached through a selective N-alkylation at a hydrazide moiety with the aid of a 2-picoline-borane complex in 50% acetic acid-hexafluoro-2-propanol. The tag, which tolerates ligation and desulfurization conditions, can be detached by a Cu-mediated selective oxidative hydrolysis of the N-alkyl hydrazide. This new method was validated through the synthesis of HIV-1 protease.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Shoko Tanaka
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Junzhen Wang
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kenya Ishikawa
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Shugo Tsuda
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tetsuo Narumi
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
7
|
Abboud SA, Cisse EH, Doudeau M, Bénédetti H, Aucagne V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem Sci 2021; 12:3194-3201. [PMID: 34164087 PMCID: PMC8179351 DOI: 10.1039/d0sc06001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment counterparts, using a straightforward synthetic approach that can be easily automated from commercially available building blocks, and applied it to a well-known problematic target, SUMO-2.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - El Hadji Cisse
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| |
Collapse
|
8
|
Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front Bioeng Biotechnol 2020; 8:162. [PMID: 32195241 PMCID: PMC7064641 DOI: 10.3389/fbioe.2020.00162] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase peptide synthesis (SPPS) provides the possibility to chemically synthesize peptides and proteins. Applying the method on hydrophilic structures is usually without major drawbacks but faces extreme complications when it comes to "difficult sequences." These includes the vitally important, ubiquitously present and structurally demanding membrane proteins and their functional parts, such as ion channels, G-protein receptors, and other pore-forming structures. Standard synthetic and ligation protocols are not enough for a successful synthesis of these challenging sequences. In this review we highlight, summarize and evaluate the possibilities for synthetic production of "difficult sequences" by SPPS, native chemical ligation (NCL) and follow-up protocols.
Collapse
Affiliation(s)
- Lena K. Mueller
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas C. Baumruck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Hanna Zhdanova
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alesia A. Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Masuda S, Tsuda S, Yoshiya T. A trimethyllysine-containing trityl tag for solubilizing hydrophobic peptides. Org Biomol Chem 2019; 17:10228-10236. [PMID: 31782417 DOI: 10.1039/c9ob02253h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hydrophobic membrane peptides/proteins having low water solubility are often difficult to prepare. To overcome this issue, temporal introduction of solubilizing tags has been demonstrated to be beneficial. Following our recent work on the solubilization of a difficult target by using a hydrophilic oligo-Lys tag bearing a trityl linker (Trt-K method), this paper describes a comparative study of the solubilizing abilities of several peptidic trityl tags containing Lys, Arg, Glu, Asn, Nε-tri-Me-Lys or Cys-sulfonate using two hydrophobic model peptides. Among the tags evaluated, that containing Nε-tri-Me-Lys exhibits superior solubilizing ability.
Collapse
Affiliation(s)
- Shun Masuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Shugo Tsuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Taku Yoshiya
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
10
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Kasim JK, Kavianinia I, Ng J, Harris PWR, Birch NP, Brimble MA. Efficient synthesis and characterisation of the amyloid beta peptide, Aβ 1-42, using a double linker system. Org Biomol Chem 2019; 17:30-34. [PMID: 30500032 DOI: 10.1039/c8ob02929f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amyloidogenic Aβ42 peptide was efficiently prepared using a double linker system, markedly improving solubility and chromatographic peak resolution, thus enabling full characterisation using standard techniques. The tag was readily cleaved with sodium hydroxide and removed by aqueous extraction, affording Aβ42 in high purity and yield for biophysical characterisation studies.
Collapse
Affiliation(s)
- Johanes K Kasim
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Jin Ng
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Brain Research New Zealand Rangahau Roro Aotearoa and Centre for Brain Research, Auckland 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Nigel P Birch
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Brain Research New Zealand Rangahau Roro Aotearoa and Centre for Brain Research, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
12
|
Brailsford JA, Stockdill JL, Axelrod AJ, Peterson MT, Vadola PA, Johnston EV, Danishefsky SJ. Total Chemical Synthesis of Human Thyroid-Stimulating Hormone (hTSH) β-Subunit: Application of Arginine-tagged Acetamidomethyl (Acm R) Protecting Groups. Tetrahedron 2018; 74:1951-1956. [PMID: 30853725 PMCID: PMC6402344 DOI: 10.1016/j.tet.2018.02.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The β-subunit of human thyroid stimulating hormone (hTSH) has been synthesized as a single glycoform bearing a chitobiose disaccharide at the native glycosylation site. Key to the successful completion of this synthesis was the introduction of an arginine-tagged acetamidomethyl group, which served to greatly facilitate handling of a glycopeptide fragment with poor aqueous solubility. This general solution to the challenge of working with intractable peptides is expected to find wide use in protein synthesis.
Collapse
Affiliation(s)
- John A Brailsford
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Jennifer L Stockdill
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Abram J Axelrod
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Michael T Peterson
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Paul A Vadola
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Eric V Johnston
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Samuel J Danishefsky
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
13
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
14
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018; 57:2105-2109. [DOI: 10.1002/anie.201711546] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
15
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
16
|
Li JB, Tang S, Zheng JS, Tian CL, Liu L. Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins. Acc Chem Res 2017; 50:1143-1153. [PMID: 28374993 DOI: 10.1021/acs.accounts.7b00001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical synthesis can produce water-soluble globular proteins bearing specifically designed modifications. These synthetic molecules have been used to study the biological functions of proteins and to improve the pharmacological properties of protein drugs. However, the above advances notwithstanding, membrane proteins (MPs), which comprise 20-30% of all proteins in the proteomes of most eukaryotic cells, remain elusive with regard to chemical synthesis. This difficulty stems from the strong hydrophobic character of MPs, which can cause considerable handling issues during ligation, purification, and characterization steps. Considerable efforts have been made to improve the solubility of transmembrane peptides for chemical ligation. These methods can be classified into two main categories: the manipulation of external factors and chemical modification of the peptide. This Account summarizes our research advances in the development of chemical modification especially the two generations of removable backbone modification (RBM) strategy for the chemical synthesis of MPs. In the first RBM generation, we install a removable modification group at the backbone amide of Gly within the transmembrane peptides. In the second RBM generation, the RBM group can be installed into all primary amino acid residues. The second RBM strategy combines the activated intramolecular O-to-N acyl transfer reaction, in which a phenyl group remains unprotected during the coupling process, which can play a catalytic role to generate the activated phenyl ester to assist in the formation of amide. The key feature of the RBM group is its switchable stability in trifluoroacetic acid. The stability of these backbone amide N-modifications toward TFA can be modified by regulating the electronic effects of phenol groups. The free phenol group is acylated to survive the TFA deprotection step, while the acyl phenyl ester will be quantitatively hydrolyzed in a neutral aqueous solution, and the free phenol group increases the electron density of the benzene ring to make the RBM labile to TFA. The transmembrane peptide segment bearing RBM groups behaves like a water-soluble peptide during fluorenylmethyloxycarbonyl based solid-phase peptide synthesis (Fmoc SPPS), ligation, purification, and characterization. The quantitative removal of the RBM group can be performed to obtain full-length MPs. The RBM strategy was used to prepare the core transmembrane domain Kir5.1[64-179] not readily accessible by recombinant protein expression, the influenza A virus M2 proton channel with phosphorylation, the cation-specific ion channel p7 from the hepatitis C virus with site-specific NMR isotope labels, and so on. The RBM method enables the practical engineering of small- to medium-sized MPs or membrane protein domains to address fundamental questions in the biochemical, biophysical, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jia-Bin Li
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Chang-Lin Tian
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
17
|
Jacobsen MT, Petersen ME, Ye X, Galibert M, Lorimer GH, Aucagne V, Kay MS. A Helping Hand to Overcome Solubility Challenges in Chemical Protein Synthesis. J Am Chem Soc 2016; 138:11775-82. [PMID: 27532670 DOI: 10.1021/jacs.6b05719] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although native chemical ligation (NCL) and related chemoselective ligation approaches provide an elegant method to stitch together unprotected peptides, the handling and purification of insoluble and aggregation-prone peptides and assembly intermediates create a bottleneck to routinely preparing large proteins by completely synthetic means. In this work, we introduce a new general tool, Fmoc-Ddae-OH, N-Fmoc-1-(4,4-dimethyl-2,6-dioxocyclo-hexylidene)-3-[2-(2-aminoethoxy)ethoxy]-propan-1-ol, a heterobifunctional traceless linker for temporarily attaching highly solubilizing peptide sequences ("helping hands") onto insoluble peptides. This tool is implemented in three simple and nearly quantitative steps: (i) on-resin incorporation of the linker at a Lys residue ε-amine, (ii) Fmoc-SPPS elongation of a desired solubilizing sequence, and (iii) in-solution removal of the solubilizing sequence using mild aqueous hydrazine to cleave the Ddae linker after NCL-based assembly. Successful introduction and removal of a Lys6 helping hand is first demonstrated in two model systems (Ebola virus C20 peptide and the 70-residue ribosomal protein L31). It is then applied to the challenging chemical synthesis of the 97-residue co-chaperonin GroES, which contains a highly insoluble C-terminal segment that is rescued by a helping hand. Importantly, the Ddae linker can be cleaved in one pot following NCL or desulfurization. The purity, structure, and chaperone activity of synthetic l-GroES were validated with respect to a recombinant control. Additionally, the helping hand enabled synthesis of d-GroES, which was inactive in a heterochiral mixture with recombinant GroEL, providing additional insight into chaperone specificity. Ultimately, this simple, robust, and easy-to-use tool is expected to be broadly applicable for the synthesis of challenging peptides and proteins.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Mark E Petersen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Xiang Ye
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Mathieu Galibert
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - George H Lorimer
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| |
Collapse
|
18
|
Chemuru S, Kodali R, Wetzel R. Improved chemical synthesis of hydrophobic Aβ peptides using addition of C-terminal lysines later removed by carboxypeptidase B. Biopolymers 2016; 102:206-21. [PMID: 24488729 DOI: 10.1002/bip.22470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023]
Abstract
Many amyloidogenic peptides are highly hydrophobic, introducing significant challenges to obtaining high quality peptides by chemical synthesis. For example, while good yield and purity can be obtained in the solid-phase synthesis of the Alzheimer's plaque peptide Aβ40, addition of a C-terminal Ile-Ala sequence to generate the more toxic Aβ42 molecule creates a much more difficult synthesis resulting in low yields and purities. We describe here a new method that significantly improves the Fmoc solid-phase synthesis of Aβ peptides. In our method, Lys residues are linked to the desired peptide's C-terminus through standard peptide bonds during the synthesis. These Lys residues are then removed post-purification using immobilized carboxypeptidase B (CPB). With this method we obtained both Aβ42 and Aβ46 of superior quality that, for Aβ42, rivals that obtained by recombinant expression. Intriguingly, the method appears to provide independent beneficial effects on both the total synthetic yield and on purification yield and final purity. Reversible Lys addition with CPB removal should be a generally useful method for making hydrophobic peptides that is applicable to any sequence not ending in Arg or Lys. As expected from the additional hydrophobicity of Aβ46, which is extended from the sequence Aβ42 by a C-terminal Thr-Val-Ile-Val sequence, this peptide makes typical amyloid at rates significantly faster than for Aβ42 or Aβ40. The enhanced amyloidogenicity of Aβ46 suggests that, even though it is present in relatively low amounts in the human brain, it could play a significant role in helping to initiate Aβ amyloid formation.
Collapse
Affiliation(s)
- Saketh Chemuru
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | |
Collapse
|
19
|
Harris PWR, Brimble MA. Chemical synthesis of a polypeptide backbone derived from the primary sequence of the cancer protein NY-ESO-1 enabled by kinetically controlled ligation and pseudoprolines. Biopolymers 2016; 104:116-27. [PMID: 25656702 DOI: 10.1002/bip.22621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 01/14/2023]
Abstract
The cancer protein NY-ESO-1 has been shown to be one of the most promising vaccine candidates although little is known about its cellular function. Using a chemical protein strategy, the 180 amino acid polypeptide, tagged with an arginine solubilizing tail, was assembled in a convergent manner from four unprotected peptide α-thioester peptide building blocks and one cysteinyl polypeptide, which were in turn prepared by Boc and Fmoc solid phase peptide synthesis (SPPS) respectively. To facilitate the assembly by ligation chemistries, non-native cysteines were introduced as chemical handles into the polypeptide fragments; pseudoproline dipeptides and microwave assisted Fmoc SPPS were crucial techniques to prepare the challenging hydrophobic C-terminal fragment. Three sequential kinetically controlled ligations, which exploited the reactivity between peptide arylthioesters and peptide alkylthioesters, were then used in order to assemble the more tractable N-terminal region of NY-ESO-1. The ensuing 147 residue polypeptide thioester then underwent successful final native chemical ligation with the very hydrophobic C-terminal polypeptide bearing an N-terminal cysteine affording the 186 residue polypeptide as an advanced intermediate en route to the native NY-ESO-1 protein.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
20
|
Harris PWR, Brimble MA. A comparison of Boc and Fmoc SPPS strategies for the preparation of C-terminal peptide α-thiolesters: NY-ESO-1 ³⁹Cys-⁶⁸Ala-COSR. Biopolymers 2016; 100:356-65. [PMID: 23444272 DOI: 10.1002/bip.22223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
The synthesis of a polypeptide derived from the cancer testis antigen NY-ESO-1 bearing a C-terminal α-thiolester is described. Employing tert-butyloxycarbonyl solid phase peptide synthesis the thiolester moiety was installed on-resin using a mercaptopropionic acid linker, thereby requiring no post synthetic manipulations and delivering the requisite α-thiolester polypeptide after cleavage from the resin with HF. Several 9-fluorenylmethyloxycarbonyl solid phase peptide synthesis approaches whereby the thiolester was required to be introduced in a post synthesis manner were examined concurrently. These comprised syntheses on two different "safety catch" linkers, an N-alkyl-N-acyl sulphonamide and an N-acyl benzimidazolone wherein the thiolester is generated from an activated precursor. The condensation of a mercaptan with the C-terminal carboxylate in a direct thiolesterification reaction was also examined. When using either of the three 9-fluorenylmethyloxycarbonyl-based approaches, the linear polypeptide could be assembled straightforwardly on the solid phase resin; however, a thiolesterification of the C-terminal carboxyl of the fully side chain protected peptide proved to be the most effective post-assembly method for the installation of the C-terminal thiolester.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand; Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019,, Auckland, 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds St, Auckland, 1010, New Zealand
| | | |
Collapse
|
21
|
Yu RR, Mahto SK, Justus K, Alexander MM, Howard CJ, Ottesen JJ. Hybrid phase ligation for efficient synthesis of histone proteins. Org Biomol Chem 2016; 14:2603-7. [PMID: 26821702 PMCID: PMC4767651 DOI: 10.1039/c5ob02195b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We introduce a hybrid solid-solution phase ligation approach that combines the efficiency of solid phase ligation with solution phase ligation in the total synthesis of modified histone proteins. A two linker strategy allows analysis throughout work on the solid phase and maximizes yields through cleavage at an external Rink, while an internal HMBA linker allows the native carboxyl terminus for any protein sequence. We demonstrate this approach for two histone proteins: triple-acetylated H4-K5ac, K12ac, K91ac and CENP-A-K124ac.
Collapse
Affiliation(s)
- Ruixuan R Yu
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Santosh K Mahto
- Department of Chemistry & Biochemistry, The Ohio State University, USA
| | - Kurt Justus
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | - Cecil J Howard
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Jennifer J Ottesen
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Medini K, Harris PWR, Hards K, Dingley AJ, Cook GM, Brimble MA. Chemical Synthesis of A Pore-Forming Antimicrobial Protein, Caenopore-5, by Using Native Chemical Ligation at a Glu-Cys Site. Chembiochem 2014; 16:328-36. [DOI: 10.1002/cbic.201402513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Indexed: 01/19/2023]
|
23
|
Biswas S, Kayaleh R, Pillai GG, Seon C, Roberts I, Popov V, Alamry KA, Katritzky AR. Long-Range Chemical Ligation from N→N Acyl Migrations in Tryptophan Peptides via Cyclic Transition States of 10- to 18-Members. Chemistry 2014; 20:8189-98. [DOI: 10.1002/chem.201400125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 11/07/2022]
|
24
|
Facile synthesis of C-terminal peptide hydrazide and thioester of NY-ESO-1 (A39-A68) from an Fmoc-hydrazine 2-chlorotrityl chloride resin. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Paradís-Bas M, Albert-Soriano M, Tulla-Puche J, Albericio F. Linear versus branched poly-lysine/arginine as polarity enhancer tags. Org Biomol Chem 2014; 12:7194-6. [DOI: 10.1039/c4ob01354a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of Lys- and Arg-containing peptides as solubilizing tags were studied to evaluate their influence on polarity.
Collapse
Affiliation(s)
- Marta Paradís-Bas
- Institute for Research in Biomedicine Barcelona
- 08028 Barcelona, Spain
- CIBER-BBN
- Networking Centre for Address
- 08028 Barcelona, Spain
| | | | - Judit Tulla-Puche
- Institute for Research in Biomedicine Barcelona
- 08028 Barcelona, Spain
- CIBER-BBN
- Networking Centre for Address
- 08028 Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine Barcelona
- 08028 Barcelona, Spain
- CIBER-BBN
- Networking Centre for Address
- 08028 Barcelona, Spain
| |
Collapse
|
26
|
Yang SH, Wojnar JM, Harris PWR, DeVries AL, Evans CW, Brimble MA. Chemical synthesis of a masked analogue of the fish antifreeze potentiating protein (AFPP). Org Biomol Chem 2013; 11:4935-42. [PMID: 23788006 DOI: 10.1039/c3ob41066h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recently identified Antarctic fish protein termed antifreeze potentiating protein (AFPP) is thought to act as an adjunct to the previously characterised antifreeze glycoproteins (AFGPs), the two acting together to inhibit ice crystal growth in vivo. Elucidating the functional properties of the new AFPP requires access to large amounts of pure product, but the paucity of natural material necessitates alternative approaches. We therefore embarked on the total chemical synthesis of the AFPP, through a convergent ligation strategy. After many challenges, mostly due to the solubility issues of the peptide fragments, and several revisions of the original synthetic strategy, we have successfully synthesized a masked analogue of AFPP. The key to the successful synthesis was the use of a solubilising tag attached through a hydrolysable linker.
Collapse
Affiliation(s)
- Sung-Hyun Yang
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1142, New Zealand
| | | | | | | | | | | |
Collapse
|
27
|
Pedersen SL, Tofteng AP, Malik L, Jensen KJ. Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 2012; 41:1826-44. [DOI: 10.1039/c1cs15214a] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|